#include "provalctrl.h" //初始化比例阀相关参数 propotion_valve pv_one; propotion_valve pv_two; float data_wr[3] = {0}; //[0,1,2] -> “Kp, Ti, Td” float data_rd[3] = {0}; void prov_init(void) //不同比例阀的初始参数不一样 { ee_readfloats(PRO1_ADDR,data_rd,3);//读取存储在EEPROM里的PID参数 pv_one.status = PROV_RUNNING; pv_one.tag = 1; //标签,比例阀1 for(uint8_t i = 0;i < SLDW_PRES_OUT;i++) //前n个时刻的输出气压 { pv_one.previous_pressure[i] = 0; } pv_one.current_pressure = 0; //当前气压,Kpa pv_one.current_percent = 0; //当前气压百分比( 0~900Kpa -> 0~100% ) pv_one.target_pressure = 0; //目标气压,Kpa pv_one.target_percent = 0; //目标气压百分比( 0~900Kpa -> 0~100% ) pv_one.target_current = 0; //目标值的理论电流 pv_one.current_input = 0; //当前输入电流 pv_one.input_min = 4; //输入电流下限4mA pv_one.input_max = 20; //输入电流上限20mA pv_one.bias = 0; //偏差 = 目标气压百分比 - 当前气压百分比 pv_one.bias_previous = 0; //前一个时刻的偏差 pv_one.bias_area = 0.5; //允许的误差范围,±a(%) pv_one.Kp = (isnan(data_rd[0]))?(0):(data_rd[0]); //比例系数 pv_one.Ti = (data_rd[1] == 0)?(1000000):(data_rd[1]); //积分时间,位于分母 pv_one.Ing = 0; //积分输出 pv_one.Ing_max = 5000; //积分上限 pv_one.Ing_min = 0; //积分下限 pv_one.Ing_sum = 0; //偏差求和 pv_one.Td = data_rd[2]; //微分时间 pv_one.Ts = 0.05; //采样周期,50ms pv_one.Div = 0; //微分输出 pv_one.pidout = 0; pv_one.pidout_max = 0; pv_one.pidout_min = 0; pv_one.slow_down_flg = 0; // pv_one.cstep_gasin = 0.001; //逐步接近的电流步长,mA,充气 // pv_one.cstep_gasout = 0.002; //逐步接近的电流步长,mA,排气 // pv_one.cstep_max = 0; //逐步接近的电流范围上限 // pv_one.cstep_min = 0; //逐步接近的电流范围下限 // pv_one.cstep_wait = 0; pv_one.pvout = ao_blf1_set; //DAC输出函数 pv_one.pvout(0); //输出0mA /************************************************/ ee_readfloats(PRO2_ADDR,data_rd,3); pv_two.status = PROV_RUNNING; pv_two.tag = 2; //标签,比例阀2 for(uint8_t i = 0;i < SLDW_PRES_OUT;i++) //前n个时刻的输出气压 { pv_two.previous_pressure[i] = 0; } pv_two.current_pressure = 0; pv_two.current_percent = 0; pv_two.target_pressure = 0; pv_two.target_percent = 0; pv_two.target_current = 0; //目标值的理论电流 pv_two.current_input = 0; pv_two.input_min = 4; pv_two.input_max = 20; pv_two.bias = 0; pv_two.bias_previous = 0; //前一个时刻的偏差 pv_two.bias_area = 0.5; pv_two.Kp = (isnan(data_rd[0]))?(0):(data_rd[0]);; pv_two.Ti = (data_rd[1] == 0)?(1000000):(data_rd[1]); //积分时间 pv_two.Ing = 0; pv_two.Ing_max = 5000; pv_two.Ing_min = 0; pv_two.Ing_sum = 0; pv_two.Td = data_rd[2]; pv_two.Ts = 0.05; //采样周期,50ms pv_two.Div = 0; pv_two.pidout = 0; pv_two.pidout_max = 0; pv_two.pidout_min = 0; pv_two.slow_down_flg = 0; // pv_two.cstep_gasin = 0.001; //逐步接近的电流步长,mA,充气 // pv_two.cstep_gasout = 0.002; //逐步接近的电流步长,mA,排气 // pv_two.cstep_max = 0; // pv_two.cstep_min = 0; // pv_two.cstep_wait = 0; pv_two.pvout = ao_blf2_set; pv_two.pvout(0); } //初始化自整定相关的参数 prov_adjust adj_pv1; prov_adjust adj_pv2; void prov_adj_init(void) { adj_pv1.adj_flag = 0; //自整定标志,0:空闲,1:整定中 for( uint8_t i = 0;i < OSCILL_TIMES;i++) //继电整定,振荡幅值,振荡周期 { adj_pv1.relay_a[i] = 0; adj_pv1.relay_tc[i] = 0; } adj_pv1.relay_d = 0.15; //继电整定,回环幅值 adj_pv1.air_source = 0; //气源,单位Kpa adj_pv1.middle_current = 0; //中间气压电流 adj_pv1.oscil_times = 0; //振荡次数 /*****************************************************/ adj_pv2.adj_flag = 0; //自整定标志,0:空闲,1:整定中 for( uint8_t i = 0;i < OSCILL_TIMES;i++) //继电整定,振荡幅值,振荡周期 { adj_pv2.relay_a[i] = 0; adj_pv2.relay_tc[i] = 0; } adj_pv2.relay_d = 0.15; //继电整定,回环幅值 adj_pv2.air_source = 0; //气源,单位Kpa adj_pv2.middle_current = 0; //中间气压电流 adj_pv2.oscil_times = 0; //振荡次数 } float out_makeup = 0.05; void prov_set(float target_p, propotion_valve *pvx) //比例阀目标值设定,调节范围计算 { target_p = (target_p < pvx->input_max)?(target_p):(pvx->input_max); //dac输出限幅 target_p = (target_p > pvx->input_min)?(target_p):(pvx->input_min); pvx->target_percent = (target_p - pvx->input_min) / (pvx->input_max - pvx->input_min)*100; pvx->target_pressure = pvx->target_percent/100*900; //Kpa, 比例阀 (4~20mA -> 0~0.9Mpa) switch (pvx->tag) { case 1: { target_p = (prov_section_calculate(target_p,&adj_pv1) > 0)?(prov_section_calculate(target_p,&adj_pv1)):(target_p); } break; case 2: { target_p = (prov_section_calculate(target_p,&adj_pv2) > 0)?(prov_section_calculate(target_p,&adj_pv2)):(target_p); } break; default: break; } pvx->target_current = target_p; //记录当前理论模拟输出 pvx->pidout_max = pvx->target_current*(1 + out_makeup); //pid输出调节上限 pvx->pidout_min = pvx->target_current*(1 - out_makeup); //pid输出调节下限 pvx->gas_direction = (pvx->target_current >= pvx->current_input)?(GAS_IN):(GAS_OUT); //判断即将进行充气还是排气 pvx->current_input = pvx->target_current; //理论值作为当前输出值 // pvx->cstep_max = pvx->current_input + (float)0.8; //逐步输出调节上限 // pvx->cstep_min = pvx->current_input - (float)0.8; //逐步输出调节下限 // pvx->cstep_wait = 0; //等待计数清零 pvx->slow_down_flg = 0; //减速标志清零 pvx->pvout(pvx->current_input); //dac输出 } float prov_section_calculate(float target_pressure, prov_adjust *adj_pvx) //分段计算达到目标气压所需的电流 { float target_current = 0; if(adj_pvx->table_current[0] == 0) return -1; //未经过整定 for(uint8_t i = 0;i < SECTION_NUM - 1;i++) { if( (target_pressure >= adj_pvx->table_pressure[i]) && (target_pressure < adj_pvx->table_pressure[i+1]) ) { target_current = adj_pvx->table_current[i]+(adj_pvx->table_current[i+1] - adj_pvx->table_current[i]) \ * (target_pressure - adj_pvx->table_pressure[i])/(adj_pvx->table_pressure[i+1] - target_pressure < adj_pvx->table_pressure[i]); } if(target_pressure >= adj_pvx->table_pressure[SECTION_NUM - 1]) target_current = adj_pvx->table_current[SECTION_NUM - 1]; } return target_current; } //绝对值计算 float abs_bias(float bias) { bias =( bias>=0 )?(bias):(-bias); return bias; } //pid控制 float beta_in = 0, beta_out = 0; //变速积分 void prov_calibrate_pid(propotion_valve *pvx) { if( (abs_bias(pvx->bias) > pvx->bias_area ) && (abs_bias(pvx->bias) < BIAS_MAX) ) //误差进入目标±BIAS_MAX%以内后再进行控制 { //变速积分 beta_in = ( abs_bias(pvx->bias*pvx->bias) + BIAS_MAX ) / ( BIAS_MAX ); beta_out = ( abs_bias(pvx->bias) + BIAS_MAX/2 ) / ( BIAS_MAX ); //充放气过程分开处理 switch(pvx->gas_direction) { case GAS_IN: //充气 { pvx->Ing_sum += pvx->bias * beta_in; //偏差求和 pvx->Ing_sum = (pvx->Ing_sum > pvx->Ing_max)?(pvx->Ing_max):(pvx->Ing_sum); //积分限幅 pvx->Ing_sum = (pvx->Ing_sum < pvx->Ing_min)?(pvx->Ing_min):(pvx->Ing_sum); pvx->Ing = ( pvx->Ts / pvx->Ti ) * pvx->Ing_sum; //积分项 pvx->Div = ( pvx->Td / pvx->Ts ) * ( pvx->bias - pvx->bias_previous ); //微分项 pvx->pidout = pvx->Kp*( pvx->bias + pvx->Ing + pvx->Div ); //pid输出 pvx->current_input = (pvx->pidout/100) * (pvx->input_max - pvx->input_min) + pvx->input_min; } break; case GAS_OUT: //排气 { pvx->Ing_sum += pvx->bias * beta_out; //偏差求和 pvx->Ing_sum = (pvx->Ing_sum > pvx->Ing_max)?(pvx->Ing_max):(pvx->Ing_sum); //积分限幅 pvx->Ing_sum = (pvx->Ing_sum < pvx->Ing_min)?(pvx->Ing_min):(pvx->Ing_sum); pvx->Ing = ( pvx->Ts / pvx->Ti ) * pvx->Ing_sum; //积分项 pvx->Div = ( pvx->Td / pvx->Ts ) * ( pvx->bias - pvx->bias_previous ); //微分项 pvx->pidout = pvx->Kp*( pvx->bias + pvx->Ing + pvx->Div ); //pid输出 pvx->current_input = (pvx->pidout/100) * (pvx->input_max - pvx->input_min) + pvx->input_min; } break; default: { } break; } pvx->current_input = (pvx->current_input < pvx->pidout_max)?(pvx->current_input):(pvx->pidout_max); //充气时限制输出上限 pvx->current_input = (pvx->current_input > pvx->pidout_min)?(pvx->current_input):(pvx->pidout_min); //排气时限制输出下限 pvx->bias_previous = pvx->bias; //更新前一个时刻的偏差 if( abs_bias(pvx->previous_pressure[0] - pvx->previous_pressure[SLDW_PRES_OUT - 1]) <= 10 ) //判断是否趋于稳定 { pvx->slow_down_flg = 1; } pvx->current_input = (pvx->target_current < pvx->input_max*(float)(0.995))?(pvx->current_input):(pvx->input_max); //小信号切除 if( pvx->target_current <= pvx->input_min*(float)(1.005) ) { pvx->current_input = pvx->input_min; pvx->Ing_sum = 0; } pvx->pvout(pvx->current_input); //dac输出 }else if(abs_bias(pvx->bias) >= BIAS_MAX) { switch(pvx->gas_direction) //根据气体方向对输出范围做补偿 { case GAS_IN: { pvx->Ing_sum = (pvx->target_percent - 100*out_makeup) / pvx->Kp / ( pvx->Ts / pvx->Ti ); //预估积分值,改善滞后 pvx->Ing_sum = (pvx->Ing_sum < pvx->Ing_min)?(pvx->Ing_min):(pvx->Ing_sum); } break; case GAS_OUT: { pvx->Ing_sum = pvx->target_percent / pvx->Kp / ( pvx->Ts / pvx->Ti ); //预估积分值,改善滞后 } break; default: { } break; } } } //模拟量控制 float ao_dwq = 0; //AO输出电流值(定位器) float ao_blf1 = 0; //AO输出电流值(比例阀) float ao_blf2 = 0; //AO输出电流值(比例阀) float atm_pressure = 0; //用于存放大气绝压,单位:0.1Kpa adj_steps astep = ADJ_WAIT; //自整定步骤,继电反馈 adj_section_steps astep_s = SECTION_WAIT; //自整定步骤,分段 void analog_ctrl(void) { if(ao_dwq != (float)(HoldReg[0]) / 1000) //保持寄存器值发生变化时dac输出 { ao_dwq = (float)(HoldReg[0]) / 1000; // uA -> mA if(ao_dwq > 25) ao_dwq = 25; //定位器控制 ao_dwq_set(ao_dwq); } if( ao_blf1!= (float)(HoldReg[1]) / 1000) //保持寄存器值发生变化时dac输出 { ao_blf1 = (float)(HoldReg[1]) / 1000; // uA -> mA prov_set(ao_blf1,&pv_one); //控制比例阀1 } if(ao_blf2 != (float)(HoldReg[2]) / 1000) //保持寄存器值发生变化时dac输出 { ao_blf2 = (float)(HoldReg[2]) / 1000; // uA -> mA prov_set(ao_blf2,&pv_two); //控制比例阀2 } if( (CoilState[3]&(0x40)) == 0x40 ) //触发比例阀1自整定 { if(astep == ADJ_WAIT) { pv_one.status = PROV_ADJUSTING; } } if( (CoilState[3]&(0x20)) == 0x20 ) { if(astep == ADJ_WAIT) { pv_two.status = PROV_ADJUSTING; } } if(it_100ms_flag_pv == 1) //每隔100ms更新一次数据 { it_100ms_flag_pv = 0; InputReg[7] = ( (InputReg[7]<16000)&&(InputReg[7]>8000) )?(InputReg[7]):(12000); //应对没接大气压力的情况 atm_pressure = ( (InputReg[7] - 4000)/(float)16000.0 ) * 2000; //大气绝压更新,4~20mA->0~200Kpa for(uint8_t i = 1;i< SLDW_PRES_OUT;i++) //滑动窗口,记录历史纯输出气压 { pv_one.previous_pressure[SLDW_PRES_OUT - i] = pv_one.previous_pressure[SLDW_PRES_OUT - i - 1]; pv_two.previous_pressure[SLDW_PRES_OUT - i] = pv_two.previous_pressure[SLDW_PRES_OUT - i - 1]; } pv_one.previous_pressure[0] = pv_one.current_pressure; pv_two.previous_pressure[0] = pv_two.current_pressure; //比例阀1数据更新:当前气压、当前气压百分比、百分比偏差、当前输入电流(单片机->比例阀) pv_one.current_pressure = (InputReg[16] - atm_pressure)/(float)10; //Kpa,sensor1 A口绝压转表压 pv_one.current_percent = pv_one.current_pressure/900*100; pv_one.bias = pv_one.target_percent - pv_one.current_percent; //比例阀2数据更新:当前气压、当前气压百分比、百分比偏差、当前输入电流(单片机->比例阀) pv_two.current_pressure = (InputReg[17] - atm_pressure)/(float)10; //Kpa,sensor1 B口绝压转表压 pv_two.current_percent = pv_two.current_pressure/900*100; pv_two.bias = pv_two.target_percent - pv_two.current_percent; } if(it_50ms_flag_pv == 1) //每隔50ms校准一次 { it_50ms_flag_pv = 0; //每个比例阀对应两个电磁阀,一个是气源一个是锁止阀 if( (CoilState[0]&(0x03)) == 0x03 ) //2个电磁阀都开启的情况下才进行控制比例阀1,否则保持 { if(pv_two.status != PROV_ADJUSTING) //对其中一个比例阀进行自整定时,不对另一个进行控制 { prov_ctrl(&pv_one, &adj_pv1); } } if( (CoilState[0]&(0x0C)) == 0x0C ) //2个电磁阀都开启的情况下才进行控制比例阀2,否则保持 { if(pv_one.status != PROV_ADJUSTING) //对其中一个比例阀进行自整定时,不对另一个进行控制 { prov_ctrl(&pv_two, &adj_pv2); } } } } //逐步接近法 //void prov_calibrate_step(propotion_valve *pvx) //{ // pvx->cstep_wait = (pvx->cstep_wait > 254)?(pvx->cstep_wait):(pvx->cstep_wait + 1); //每100ms加一次,上限255 // // if( pvx->cstep_wait > CSTEP_WAIT_MAX) //目标更新X秒后,误差仍不符合条件时再进行微步调节 // { // if( (pvx->bias > pvx->bias_area) && (pvx->bias < BIAS_MAX) ) //正偏差(目标-实际),输出偏小 // { // pvx->current_input += ((pvx->bias < 1))?(pvx->cstep_gasin):(pvx->cstep_gasin*3); // // pvx->current_input = (pvx->current_input <= pvx->cstep_max)?(pvx->current_input):(pvx->cstep_max); //dac输出限幅 // pvx->current_input = (pvx->current_input <= pvx->input_max)?(pvx->current_input):(pvx->input_max); // // pvx->pvout(pvx->current_input); // } // // if( (pvx->bias < -pvx->bias_area) && (pvx->bias > -BIAS_MAX) ) //负偏差(目标-实际),输出偏大 // { // pvx->current_input -= ((pvx->bias > -1))?(pvx->cstep_gasin):(pvx->cstep_gasout*3); // // pvx->current_input = (pvx->current_input >= pvx->cstep_min)?(pvx->current_input):(pvx->cstep_min); //dac输出限幅 // pvx->current_input = (pvx->current_input >= pvx->input_min)?(pvx->current_input):(pvx->input_min); // // pvx->pvout(pvx->current_input); // } // } // //} //比例阀控制 void prov_ctrl(propotion_valve *pvx, prov_adjust *adj_pvx) { switch(pvx->status) { case PROV_RUNNING: //介入控制 { if(adj_pvx->adj_flag == 1) //进入此处说明整定被打断 { //整定结束 prov_adj_init(); astep = ADJ_WAIT; } // prov_calibrate_step(&pvx); prov_calibrate_pid(pvx); } break; case PROV_ADJUSTING: //自整定 { //继电反馈 if(astep == ADJ_WAIT) { prov_adj_init(); adj_pvx->adj_flag = 1; //整定开始 astep = ADJ_START; } prov_adj(pvx, adj_pvx); //分段 if(astep_s == SECTION_WAIT) { prov_adj_section_init(); adj_pvx->adj_flag = 1; //整定开始 astep_s = SECTION_START; } prov_adj_section(pvx, adj_pvx); } break; case PROV_HOLDING: //保持原样,不介入控制 { if(adj_pvx->adj_flag == 1) //进入此处说明整定被打断 { //整定结束 prov_adj_init(); astep = ADJ_WAIT; } } break; default: { return; } } } //PID参数自整定 int tick_previous = -1; //用于计时 int tick_current = -1; uint8_t hys_flag = 0; //0:充气, 1:排气 void prov_adj(propotion_valve *pvx, prov_adjust *adj_pvx) { switch(astep) { case ADJ_START: { if(tick_previous == -1) { tick_previous = tick500ms; prov_set(4,pvx);//排空气体 } tick_current = tick500ms; if( (tick_current - tick_previous) > 20) //等待20*500ms { //记录此时气源压力 adj_pvx->air_source = (InputReg[18] - atm_pressure) / (float)10; tick_previous = -1; tick_current = -1; astep++; }else if( (tick_current - tick_previous) < 0) { tick_previous = -1; tick_current = -1; } } break; case ADJ_MOVE2MIDDLE: { if(tick_previous == -1) { tick_previous = tick500ms; adj_pvx->middle_current = (adj_pvx->air_source/2/900)*(pvx->input_max - pvx->input_min) + pvx->input_min; //输出气源50%压力 adj_pvx->middle_current = (adj_pvx->middle_current < pvx->input_max)?(adj_pvx->middle_current):(pvx->input_max); //dac输出限幅 adj_pvx->middle_current = (adj_pvx->middle_current > pvx->input_min)?(adj_pvx->middle_current):(pvx->input_min); prov_set(adj_pvx->middle_current,pvx); } tick_current = tick500ms; if( (tick_current - tick_previous) > 10) //等待10*500ms { tick_previous = -1; tick_current = -1; astep++; }else if( (tick_current - tick_previous) < 0) { tick_previous = -1; tick_current = -1; } } break; case ADJ_OSCILLATE: { if(adj_pvx->oscil_times < OSCILL_TIMES) //振荡次数是否达到目标 { if(tick_previous == -1) //计时开始,记录起始时间 { tick_previous = tick500ms; }else { //记录第 oc_times 个周期的峰值 adj_pvx->relay_a[adj_pvx->oscil_times] = (adj_pvx->relay_a[adj_pvx->oscil_times] < pvx->current_pressure)?(pvx->current_pressure):(adj_pvx->relay_a[adj_pvx->oscil_times]); } tick_current = tick500ms; //记录当前时间 if( (tick_current - tick_previous) > TICK_LIMIT ) //是否超时,TICK_LIMIT*500ms { astep = ADJ_END; //强制打断 }else if( (tick_current - tick_previous) < 0) { tick_previous = -1; tick_current = -1; } if( ( pvx->current_pressure < (adj_pvx->air_source/2*(1 + adj_pvx->relay_d)) ) && (hys_flag == 0) ) //充气振荡 { pvx->current_input = adj_pvx->middle_current*(1 + adj_pvx->relay_d); //输出气源 50*(1+d)% 压力 pvx->current_input = (pvx->current_input < pvx->input_max)?(pvx->current_input):(pvx->input_max); //dac输出限幅 pvx->current_input = (pvx->current_input > pvx->input_min)?(pvx->current_input):(pvx->input_min); prov_set(pvx->current_input,pvx); }else if( pvx->current_pressure >= (adj_pvx->air_source/2*(1 + adj_pvx->relay_d)) && (hys_flag == 0)) //切换至排气 { hys_flag = 1; } if( ( pvx->current_pressure > (adj_pvx->air_source/2*(1 - adj_pvx->relay_d)) ) && (hys_flag == 1) ) //排气振荡 { pvx->current_input = adj_pvx->middle_current*(1 - adj_pvx->relay_d); //输出气源 50*(1-d)% 压力 pvx->current_input = (pvx->current_input < pvx->input_max)?(pvx->current_input):(pvx->input_max); //dac输出限幅 pvx->current_input = (pvx->current_input > pvx->input_min)?(pvx->current_input):(pvx->input_min); prov_set(pvx->current_input,pvx); }else if( pvx->current_pressure <= (adj_pvx->air_source/2*(1 - adj_pvx->relay_d)) && (hys_flag == 1) ) //切换至充气 { hys_flag = 0; adj_pvx->relay_tc[adj_pvx->oscil_times] = (tick_current - tick_previous) * 500; //振荡周期,单位ms tick_previous = -1; //重新开始计时 tick_current = -1; adj_pvx->oscil_times++; //开始下一次振荡 } }else //振荡次数达到目标 { if(tick_previous == -1) { tick_previous = tick500ms; } tick_current = tick500ms; if( (tick_current - tick_previous) > 6) //等待6*500ms后排气 { prov_set(4,pvx); tick_previous = -1; tick_current = -1; astep++; }else if( (tick_current - tick_previous) < 0) { tick_previous = -1; tick_current = -1; } } } break; case ADJ_CALCULATE: { for(uint8_t i = 0;i < OSCILL_TIMES; i++) //对振荡周期和峰值作均值滤波 { adj_pvx->relay_A += adj_pvx->relay_a[i]; adj_pvx->relay_Tc += adj_pvx->relay_tc[i]; } adj_pvx->relay_A /= OSCILL_TIMES * ( adj_pvx->air_source/2 * (1 + adj_pvx->relay_d) ); adj_pvx->relay_Tc /= OSCILL_TIMES; /* PI [0.45,0.8]*/ /* PID [0.6,0.5,0.12]*/ pvx->Kp = (float)0.6 * ( 4 * (float)0.1 ) / ( (float)3.1415 * adj_pvx->relay_A ) / 3; pvx->Ti = (float)0.5 * adj_pvx->relay_Tc/1000 / 20; pvx->Td = (float)0.12 * adj_pvx->relay_Tc/1000; pvx->Ing_sum = 0; switch(pvx->tag) { case 1: { data_wr[0] = pvx->Kp; data_wr[1] = pvx->Ti; data_wr[2] = pvx->Td; ee_writefloats(PRO1_ADDR,data_wr,3); } break; case 2: { data_wr[0] = pvx->Kp; data_wr[1] = pvx->Ti; data_wr[2] = pvx->Td; ee_writefloats(PRO2_ADDR,data_wr,3); } break; default: { } break; } astep++; } break; case ADJ_END: { if(tick_previous == -1) { tick_previous = tick500ms; } tick_current = tick500ms; if( (tick_current - tick_previous) > 10) //等待10*500ms后恢复控制(等待期间:排气 + 计算结果) { switch(pvx->tag) //重新触发保持寄存器 { case 1: { ao_blf1 = 0; CoilState[3] &= 0xBF; //D6 = 0, [1011 1111] } break; case 2: { ao_blf2 = 0; CoilState[3] &= 0xDF; //D5 = 0, [1101 1111] } break; default: { } break; } tick_previous = -1; tick_current = -1; prov_adj_init(); pvx->status = PROV_RUNNING; //恢复控制 astep++; }else if( (tick_current - tick_previous) < 0) { tick_previous = -1; tick_current = -1; } } break; case ADJ_WAIT: { } break; default: { return; } } } void prov_adj_section_init(void) { adj_pv1.adj_flag = 0; adj_pv1.stable_area = 9; adj_pv1.wait_tick = 10; adj_pv2.adj_flag = 0; adj_pv2.stable_area = 9; adj_pv2.wait_tick = 10; for(uint8_t i = 0; i < SECTION_NUM; i++) { adj_pv1.table_current[i] = 0; adj_pv1.table_pressure[i] = 0; adj_pv2.table_current[i] = 0; adj_pv2.table_pressure[i] = 0; } } uint8_t temp_cnt = 0; void prov_adj_section(propotion_valve *pvx, prov_adjust *adj_pvx) { switch (astep_s) { case SECTION_START: { if(tick_previous == -1) { tick_previous = tick500ms; prov_set(4,pvx);//排空气体 } tick_current = tick500ms; if( (tick_current - tick_previous) > 20) //等待20*500ms { tick_previous = -1; tick_current = -1; astep_s++; }else if( (tick_current - tick_previous) < 0) { tick_previous = -1; tick_current = -1; } } break; case SECTION_RECORD_AIRSOURCE: { //记录此时气源压力 adj_pvx->air_source = (InputReg[18] - atm_pressure) / (float)10; adj_pvx->table_current[SECTION_NUM-1] = adj_pvx->air_source/900 * (pvx->input_max - pvx->input_min) + pvx->input_min; for(uint8_t i = 0;i < SECTION_NUM - 1;i++) { adj_pvx->table_current[i] = pvx->input_min + i * (adj_pvx->table_current[SECTION_NUM-1] - pvx->input_min)/(SECTION_NUM - 1); } astep_s++; } break; case SECTION_MOVE: { if(tick_previous == -1) { tick_previous = tick500ms; prov_set( adj_pvx->table_current[temp_cnt], pvx ); //设定分段电流 } tick_current = tick500ms; if( (tick_current - tick_previous) > adj_pvx->wait_tick) //等待tick*500ms { adj_pvx->table_pressure[temp_cnt] = pvx->current_pressure; //记录当前实际气压 tick_previous = -1; //准备下一次计时 tick_current = -1; temp_cnt++; if(temp_cnt >= SECTION_NUM) { temp_cnt = 0; astep_s++; } }else if( (tick_current - tick_previous) < 0) { tick_previous = -1; tick_current = -1; } } break; case SECTION_END: { if(tick_previous == -1) { tick_previous = tick500ms; } tick_current = tick500ms; if( (tick_current - tick_previous) > 10) //等待10*500ms后恢复控制(等待期间:排气 + 计算结果) { switch(pvx->tag) //重新触发保持寄存器 { case 1: { ao_blf1 = 0; } break; case 2: { ao_blf2 = 0; } break; default: { } break; } tick_previous = -1; tick_current = -1; prov_adj_section_init(); pvx->status = PROV_HOLDING; //恢复控制 astep++; }else if( (tick_current - tick_previous) < 0) { tick_previous = -1; tick_current = -1; } } break; case SECTION_WAIT: { } break; default: break; } }