#include "provalctrl.h" propotion_valve pv_one; propotion_valve pv_two; float data_wr[3] = {0}; //[0,1,2] -> “Kp, Ti, Td” float data_rd[3] = {0}; void prov_init(void) //比例阀结构体参数初始化 { ee_readfloats(EEPROM_ReadAddress1,data_rd,3); pv_one.status = PROV_RUNNING; pv_one.tag = 1; //标签,比例阀1 pv_one.current_pressure = 0; //当前气压,Kpa pv_one.current_percent = 0; //当前气压百分比( 0~900Kpa -> 0~100% ) pv_one.target_pressure = 0; //目标气压,Kpa pv_one.target_percent = 0; //目标气压百分比( 0~900Kpa -> 0~100% ) pv_one.current_input = 0; //当前输入电流 pv_one.input_min = 4; //输入电流下限4mA pv_one.input_max = 20; //输入电流上限20mA pv_one.bias = 0; //偏差 = 目标气压百分比 - 当前气压百分比 pv_one.bias_previous = 0; //前一个时刻的偏差 pv_one.bias_area = 0.5; //允许的误差范围,±a(%) pv_one.Kp = data_rd[0]; //比例系数 pv_one.Ti = (data_rd[1] == 0)?(1000000):(data_rd[1]); //积分时间 pv_one.Ing = 0; //积分输出 pv_one.Ing_max = 50; //积分上限 pv_one.Ing_min = -50; //积分下限 pv_one.Ing_sum = 0; //偏差求和 pv_one.Td = data_rd[2]; //微分时间 pv_one.Ts = 0.05; //采样周期,50ms pv_one.Div = 0; //微分输出 pv_one.pidout = 0; pv_one.pidout_max = 0; pv_one.pidout_min = 0; pv_one.cstep_gasin = 0.001; //逐步接近的电流步长,mA,充气 pv_one.cstep_gasout = 0.002; //逐步接近的电流步长,mA,排气 pv_one.cstep_max = 0; //逐步接近的电流范围上限 pv_one.cstep_min = 0; //逐步接近的电流范围下限 pv_one.cstep_wait = 0; pv_one.pvout = ao_blf1_set; pv_one.pvout(0); /************************************************/ ee_readfloats(EEPROM_ReadAddress1+12,data_rd,3); pv_two.status = PROV_RUNNING; pv_two.tag = 2; //标签,比例阀2 pv_two.current_pressure = 0; pv_two.current_percent = 0; pv_two.target_pressure = 0; pv_two.target_percent = 0; pv_two.current_input = 0; pv_two.input_min = 4; pv_two.input_max = 20; pv_two.bias = 0; pv_two.bias_previous = 0; //前一个时刻的偏差 pv_two.bias_area = 0.5; pv_two.Kp = data_rd[0]; pv_two.Ti = (data_rd[1] == 0)?(1000000):(data_rd[1]); //积分时间 pv_two.Ing = 0; pv_two.Ing_max = 50; pv_two.Ing_min = -50; pv_two.Ing_sum = 0; pv_two.Td = data_rd[2]; pv_two.Ts = 0.05; //采样周期,50ms pv_two.Div = 0; pv_two.pidout = 0; pv_two.pidout_max = 0; pv_two.pidout_min = 0; pv_two.cstep_gasin = 0.001; //逐步接近的电流步长,mA,充气 pv_two.cstep_gasout = 0.002; //逐步接近的电流步长,mA,排气 pv_two.cstep_max = 0; pv_two.cstep_min = 0; pv_two.cstep_wait = 0; pv_two.pvout = ao_blf2_set; pv_two.pvout(0); } prov_adjust adj_pv1; prov_adjust adj_pv2; void prov_adj_init(void) { adj_pv1.adj_flag = 0; //自整定标志,0:空闲,1:整定中 for( uint8_t i = 0;i < OSCILL_TIMES;i++) //继电整定,振荡幅值,振荡周期 { adj_pv1.relay_a[i] = 0; adj_pv1.relay_tc[i] = 0; } adj_pv1.relay_d = 0.15; //继电整定,回环幅值 adj_pv1.air_source = 0; //气源,单位Kpa adj_pv1.middle_current = 0; //中间气压电流 adj_pv1.oscil_times = 0; //振荡次数 /*****************************************************/ adj_pv2.adj_flag = 0; //自整定标志,0:空闲,1:整定中 for( uint8_t i = 0;i < OSCILL_TIMES;i++) //继电整定,振荡幅值,振荡周期 { adj_pv2.relay_a[i] = 0; adj_pv2.relay_tc[i] = 0; } adj_pv2.relay_d = 0.15; //继电整定,回环幅值 adj_pv2.air_source = 0; //气源,单位Kpa adj_pv2.middle_current = 0; //中间气压电流 adj_pv2.oscil_times = 0; //振荡次数 } void prov_set(float target_p, propotion_valve *pvx) //比例阀目标值设定,调节范围计算 { target_p = (target_p < pvx->input_max)?(target_p):(pvx->input_max); //dac输出限幅 target_p = (target_p > 0)?(target_p):(0); pvx->target_percent = (target_p - pvx->input_min) / (pvx->input_max - pvx->input_min)*100; pvx->target_pressure = pvx->target_percent/100*900; //Kpa, 比例阀 (4~20mA -> 0~0.9Mpa) pvx->current_input = target_p; //记录当前理论模拟输出 pvx->cstep_max = pvx->current_input + (float)0.8; //逐步输出调节上限 pvx->cstep_min = pvx->current_input - (float)0.8; //逐步输出调节下限 pvx->cstep_wait = 0; //等待计数清零 pvx->pidout_max = pvx->current_input + (float)0.5; //pid输出调节上限 pvx->pidout_min = pvx->current_input - (float)0.5; //pid输出调节下限 pvx->pvout(pvx->current_input); //dac输出 } float abs_bias(float bias) //绝对值计算 { bias =( bias>=0 )?(bias):(-bias); return bias; } void prov_calibrate_pid(propotion_valve *pvx) //pid校准 { if( (abs_bias(pvx->bias) > pvx->bias_area ) && (abs_bias(pvx->bias) < BIAS_MAX) ) //误差进入目标±BIAS_MAX%以内后再进行控制 { if( (pvx->Ing_sum >= pvx->Ing_min) && (pvx->Ing_sum <= pvx->Ing_max) ) //积分累加与限幅 { pvx->Ing_sum += pvx->bias; //偏差求和 }else { pvx->Ing_sum = (pvx->Ing_sum > 0)?(pvx->Ing_max):(pvx->Ing_min); } pvx->Ing = ( pvx->Ts / pvx->Ti ) * pvx->Ing_sum; //积分项 pvx->Div = ( pvx->Td / pvx->Ts ) * ( pvx->bias - pvx->bias_previous ); //微分项 pvx->pidout = pvx->Kp*( pvx->bias + pvx->Ing + pvx->Div ); //pid输出 pvx->current_input += (pvx->pidout/100) * (pvx->input_max - pvx->input_min); pvx->bias_previous = pvx->bias; //更新前一个时刻的偏差 pvx->current_input = (pvx->current_input < pvx->pidout_max)?(pvx->current_input):(pvx->pidout_max); //pid输出限幅 pvx->current_input = (pvx->current_input > pvx->pidout_min)?(pvx->current_input):(pvx->pidout_min); pvx->current_input = (pvx->current_input < pvx->input_max)?(pvx->current_input):(pvx->input_max); //dac输出限幅 pvx->current_input = (pvx->current_input > pvx->input_min)?(pvx->current_input):(pvx->input_min); pvx->pvout(pvx->current_input); //dac输出 }else { pvx->Ing_sum = 0; pvx->Ing = 0; } } //4-20mA电流输出 float ao_dwq = 0; //AO输出电流值(定位器) float ao_blf1 = 0; //AO输出电流值(比例阀) float ao_blf2 = 0; //AO输出电流值(比例阀) float atm_pressure = 0; //用于存放大气绝压,单位:0.1Kpa adj_steps astep = ADJ_WAIT; //自整定步骤 void analog_ctrl(void) { if(ao_dwq != (float)(HoldReg[0]) / 1000) //保持寄存器值发生变化时dac输出 { ao_dwq = (float)(HoldReg[0]) / 1000; // uA -> mA if(ao_dwq > 25) ao_dwq = 25; //定位器控制 ao_dwq_set(ao_dwq); } if( ao_blf1!= (float)(HoldReg[1]) / 1000) //保持寄存器值发生变化时dac输出 { ao_blf1 = (float)(HoldReg[1]) / 1000; // uA -> mA prov_set(ao_blf1,&pv_one); //控制比例阀1 } if(ao_blf2 != (float)(HoldReg[2]) / 1000) //保持寄存器值发生变化时dac输出 { ao_blf2 = (float)(HoldReg[2]) / 1000; // uA -> mA prov_set(ao_blf2,&pv_two); //控制比例阀2 } if( (CoilState[3]&(0x40)) == 0x40 ) { if(astep == ADJ_WAIT) { pv_one.status = PROV_ADJUSTING; } } if( (CoilState[3]&(0x20)) == 0x20 ) { if(astep == ADJ_WAIT) { pv_two.status = PROV_ADJUSTING; } } if(it_100ms_flag_pv == 1) //每隔100ms更新一次数据 { it_100ms_flag_pv = 0; atm_pressure = ( (InputReg[7] - 4000)/(float)16000.0 ) * 2000; //大气绝压更新,4~20mA->0~200Kpa //比例阀1数据更新:当前气压、当前气压百分比、百分比偏差、当前输入电流(单片机->比例阀) pv_one.current_pressure = (InputReg[16] - atm_pressure)/(float)10; //Kpa,sensor1 A口绝压转表压 pv_one.current_percent = pv_one.current_pressure/900*100; pv_one.bias = pv_one.target_percent - pv_one.current_percent; //比例阀2数据更新:当前气压、当前气压百分比、百分比偏差、当前输入电流(单片机->比例阀) pv_two.current_pressure = (InputReg[17] - atm_pressure)/(float)10; //Kpa,sensor1 B口绝压转表压 pv_two.current_percent = pv_two.current_pressure/900*100; pv_two.bias = pv_two.target_percent - pv_two.current_percent; } if(it_50ms_flag_pv == 1) //每隔50ms校准一次 { it_50ms_flag_pv = 0; if( (CoilState[0]&(0x03)) == 0x03 ) //两个电磁阀都开启的情况下才进行控制,否则保持 { if(pv_two.status != PROV_ADJUSTING) //对其中一个比例阀进行自整定时,不对另一个进行控制 { prov_ctrl(&pv_one, &adj_pv1); } if(pv_one.status != PROV_ADJUSTING) //对其中一个比例阀进行自整定时,不对另一个进行控制 { prov_ctrl(&pv_two, &adj_pv2); } } } } void prov_calibrate_step(propotion_valve *pvx) //逐步接近法 { pvx->cstep_wait = (pvx->cstep_wait > 254)?(pvx->cstep_wait):(pvx->cstep_wait + 1); //每100ms加一次,上限255 if( pvx->cstep_wait > CSTEP_WAIT_MAX) //目标更新X秒后,误差仍不符合条件时再进行微步调节 { if( (pvx->bias > pvx->bias_area) && (pvx->bias < BIAS_MAX) ) //正偏差(目标-实际),输出偏小 { pvx->current_input += ((pvx->bias < 1))?(pvx->cstep_gasin):(pvx->cstep_gasin*3); pvx->current_input = (pvx->current_input <= pvx->cstep_max)?(pvx->current_input):(pvx->cstep_max); //dac输出限幅 pvx->current_input = (pvx->current_input <= pvx->input_max)?(pvx->current_input):(pvx->input_max); pvx->pvout(pvx->current_input); } if( (pvx->bias < -pvx->bias_area) && (pvx->bias > -BIAS_MAX) ) //负偏差(目标-实际),输出偏大 { pvx->current_input -= ((pvx->bias > -1))?(pvx->cstep_gasin):(pvx->cstep_gasout*3); pvx->current_input = (pvx->current_input >= pvx->cstep_min)?(pvx->current_input):(pvx->cstep_min); //dac输出限幅 pvx->current_input = (pvx->current_input >= pvx->input_min)?(pvx->current_input):(pvx->input_min); pvx->pvout(pvx->current_input); } } } void prov_ctrl(propotion_valve *pvx, prov_adjust *adj_pvx) { switch(pvx->status) { case PROV_RUNNING: { if(adj_pvx->adj_flag == 1) //进入此处说明整定被打断 { //整定结束 prov_adj_init(); } // prov_calibrate_step(&pvx); prov_calibrate_pid(pvx); } break; case PROV_ADJUSTING: { if(astep == ADJ_WAIT) { prov_adj_init(); adj_pvx->adj_flag = 1; //整定开始 astep = ADJ_START; } prov_adj(pvx, adj_pvx); } break; case PROV_HOLDING: { if(adj_pvx->adj_flag == 1) //进入此处说明整定被打断 { //整定结束 prov_adj_init(); } } break; default: { return; } } } int tick_previous = -1; int tick_current = -1; uint8_t hys_flag = 0; //0:充气, 1:排气 void prov_adj(propotion_valve *pvx, prov_adjust *adj_pvx) { switch(astep) { case ADJ_START: { if(tick_previous == -1) { tick_previous = tick500ms; prov_set(4,pvx);//排空气体 } tick_current = tick500ms; if( (tick_current - tick_previous) > 20) //等待20*500ms { //记录此时气源压力 adj_pvx->air_source = (InputReg[18] - atm_pressure) / (float)10; tick_previous = -1; tick_current = -1; astep++; } } break; case ADJ_MOVE2MIDDLE: { if(tick_previous == -1) { tick_previous = tick500ms; adj_pvx->middle_current = (adj_pvx->air_source/2/900)*(pvx->input_max - pvx->input_min) + pvx->input_min; //输出气源50%压力 adj_pvx->middle_current = (adj_pvx->middle_current < pvx->input_max)?(adj_pvx->middle_current):(pvx->input_max); //dac输出限幅 adj_pvx->middle_current = (adj_pvx->middle_current > pvx->input_min)?(adj_pvx->middle_current):(pvx->input_min); prov_set(adj_pvx->middle_current,pvx); } tick_current = tick500ms; if( (tick_current - tick_previous) > 10) //等待10*500ms { tick_previous = -1; tick_current = -1; astep++; } } break; case ADJ_OSCILLATE: { if(adj_pvx->oscil_times < OSCILL_TIMES) //振荡次数是否达到目标 { if(tick_previous == -1) { tick_previous = tick500ms; }else { //记录第 oc_times 个周期的峰值 adj_pvx->relay_a[adj_pvx->oscil_times] = (adj_pvx->relay_a[adj_pvx->oscil_times] < pvx->current_pressure)?(pvx->current_pressure):(adj_pvx->relay_a[adj_pvx->oscil_times]); } tick_current = tick500ms; if( ( pvx->current_pressure < (adj_pvx->air_source/2*(1 + adj_pvx->relay_d)) ) && (hys_flag == 0) ) //充气振荡 { pvx->current_input = adj_pvx->middle_current*(1 + adj_pvx->relay_d); //输出气源 50*(1+d)% 压力 pvx->current_input = (pvx->current_input < pvx->input_max)?(pvx->current_input):(pvx->input_max); //dac输出限幅 pvx->current_input = (pvx->current_input > pvx->input_min)?(pvx->current_input):(pvx->input_min); prov_set(pvx->current_input,pvx); }else if( pvx->current_pressure >= (adj_pvx->air_source/2*(1 + adj_pvx->relay_d)) && (hys_flag == 0)) //切换至排气 { hys_flag = 1; } if( ( pvx->current_pressure > (adj_pvx->air_source/2*(1 - adj_pvx->relay_d)) ) && (hys_flag == 1) ) //排气振荡 { pvx->current_input = adj_pvx->middle_current*(1 - adj_pvx->relay_d); //输出气源 50*(1-d)% 压力 pvx->current_input = (pvx->current_input < pvx->input_max)?(pvx->current_input):(pvx->input_max); //dac输出限幅 pvx->current_input = (pvx->current_input > pvx->input_min)?(pvx->current_input):(pvx->input_min); prov_set(pvx->current_input,pvx); }else if( pvx->current_pressure <= (adj_pvx->air_source/2*(1 - adj_pvx->relay_d)) && (hys_flag == 1) ) //切换至充气 { hys_flag = 0; adj_pvx->relay_tc[adj_pvx->oscil_times] = (tick_current - tick_previous) * 500; //振荡周期,单位ms tick_previous = -1; tick_current = -1; adj_pvx->oscil_times++; //记录振荡次数 } }else //振荡次数达到目标 { if(tick_previous == -1) { tick_previous = tick500ms; } tick_current = tick500ms; if( (tick_current - tick_previous) > 6) //等待6*500ms后排气 { prov_set(4,pvx); tick_previous = -1; tick_current = -1; astep++; } } } break; case ADJ_CALCULATE: { for(uint8_t i = 0;i < OSCILL_TIMES; i++) { adj_pvx->relay_A += adj_pvx->relay_a[i]; adj_pvx->relay_Tc += adj_pvx->relay_tc[i]; } adj_pvx->relay_A /= OSCILL_TIMES * ( adj_pvx->air_source/2 * (1 + adj_pvx->relay_d) ); adj_pvx->relay_Tc /= OSCILL_TIMES; /* PI [0.45,0.8]*/ /* PID [0.6,0.5,0.12]*/ pvx->Kp = (float)0.6 * ( 4 * (float)0.1 ) / ( (float)3.1415 * adj_pvx->relay_A ) *(float)0.5;//偏大 pvx->Ti = (float)0.5 * adj_pvx->relay_Tc/1000 * 100; //偏小 pvx->Td = (float)0.12 * adj_pvx->relay_Tc/1000 * (float)0.5; //偏大 switch(pvx->tag) { case 1: { data_wr[0] = pvx->Kp; data_wr[1] = pvx->Ti; data_wr[2] = pvx->Td; ee_writefloats(EEPROM_WriteAddress1,data_wr,3); } break; case 2: { data_wr[0] = pvx->Kp; data_wr[1] = pvx->Ti; data_wr[2] = pvx->Td; ee_writefloats(EEPROM_WriteAddress1 + 12,data_wr,3); } break; default: { } break; } astep++; } break; case ADJ_END: { if(tick_previous == -1) { tick_previous = tick500ms; } tick_current = tick500ms; if( (tick_current - tick_previous) > 10) //等待10*500ms后恢复控制 { switch(pvx->tag) //重新触发保持寄存器 { case 1: { ao_blf1 = 0; CoilState[3] &= 0xBF; //D6 = 0 } break; case 2: { ao_blf2 = 0; CoilState[3] &= 0xDF; //D5 = 0 } break; default: { } break; } tick_previous = -1; tick_current = -1; prov_adj_init(); pvx->status = PROV_RUNNING; astep++; } } break; case ADJ_WAIT: { tick_previous = -1; tick_current = -1; } break; default: { return; } } }