acdt/users/Src/provalctrl.c

222 lines
7.7 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "provalctrl.h"
#include "modbus.h"
#include "dac7311.h"
#include "main.h"
propotion_valve pv_one;
propotion_valve pv_two;
//4-20mA电流输出
float ao_dwq = 0; //AO输出电流值(定位器)
float ao_blf1 = 0; //AO输出电流值(比例阀)
float ao_blf2 = 0; //AO输出电流值(比例阀)
void prov_init(void) //比例阀结构体参数初始化
{
pv_one.current_pressure = 0; //当前气压Kpa
pv_one.current_percent = 0; //当前气压百分比( 0~900Kpa -> 0~100%
pv_one.target_pressure = 0; //目标气压Kpa
pv_one.target_percent = 0; //目标气压百分比( 0~900Kpa -> 0~100%
pv_one.current_input = 0; //当前输入电流
pv_one.input_min = 4; //输入电流下限4mA
pv_one.input_max = 20; //输入电流上限20mA
pv_one.bias = 0; //偏差 = 目标气压百分比 - 当前气压百分比
pv_one.bias_previous = 0; //前一个时刻的偏差
pv_one.bias_area = 0.5; //允许的误差范围±a(%)
pv_one.Kp = 0.02; //pid控制
pv_one.Ti = 2500;
pv_one.Ing = 0;
pv_one.Ing_max = 3;
pv_one.Ing_min = -3;
pv_one.Td = 5;
pv_one.pidout = 0;
pv_one.pidout_max = 0;
pv_one.pidout_min = 0;
pv_one.cstep_gasin = 0.001; //逐步接近的电流步长mA,充气
pv_one.cstep_gasout = 0.002; //逐步接近的电流步长mA,排气
pv_one.cstep_max = 0; //逐步接近的电流范围上限
pv_one.cstep_min = 0; //逐步接近的电流范围下限
pv_one.cstep_wait = 0;
pv_one.pvout = ao_blf1_set;
pv_one.pvout(0);
/************************************************/
pv_two.current_pressure = 0;
pv_two.current_percent = 0;
pv_two.target_pressure = 0;
pv_two.target_percent = 0;
pv_two.current_input = 0;
pv_two.input_min = 4;
pv_two.input_max = 20;
pv_two.bias = 0;
pv_one.bias_previous = 0; //前一个时刻的偏差
pv_two.bias_area = 0.5;
pv_two.Kp = 0;
pv_two.Ti = 1000000;
pv_two.Ing = 0;
pv_two.Ing_max = 5;
pv_two.Ing_min = -5;
pv_two.Td = 0;
pv_two.pidout = 0;
pv_two.pidout_max = 0;
pv_two.pidout_min = 0;
pv_two.cstep_gasin = 0.001; //逐步接近的电流步长mA,充气
pv_two.cstep_gasout = 0.002; //逐步接近的电流步长mA,排气
pv_two.cstep_max = 0;
pv_two.cstep_min = 0;
pv_two.cstep_wait = 0;
pv_two.pvout = ao_blf2_set;
pv_two.pvout(0);
}
void prov_ctrl(float target_p, propotion_valve *pvx)
{
target_p = (target_p < pvx->input_max)?(target_p):(pvx->input_max); //dac输出限幅
target_p = (target_p > 0)?(target_p):(0);
pvx->target_percent = (target_p - pvx->input_min) / (pvx->input_max - pvx->input_min)*100;
pvx->target_pressure = pvx->target_percent/100*900; //Kpa, 比例阀 (4~20mA -> 0~0.9Mpa)
pvx->current_input = target_p; //记录当前理论模拟输出
pvx->cstep_max = pvx->current_input + (float)0.8; //逐步输出调节上限
pvx->cstep_min = pvx->current_input - (float)0.8; //逐步输出调节下限
pvx->cstep_wait = 0; //等待计数清零
pvx->pidout_max = pvx->current_input + (float)0.8; //pid输出调节上限
pvx->pidout_min = pvx->current_input - (float)0.8; //pid输出调节下限
pvx->pvout(target_p); //dac输出
}
float abs_bias(float bias)
{
bias =( bias>=0 )?(bias):(-bias);
return bias;
}
void prov_calibrate_pid(propotion_valve *pvx)
{
if( (abs_bias(pvx->bias) > pvx->bias_area ) && (abs_bias(pvx->bias) < BIAS_MAX) ) //误差进入目标±BIAS_MAX%以内后再进行控制
{
if( (pvx->Ing >= pvx->Ing_min) && (pvx->Ing <= pvx->Ing_max) ) //积分累加与限幅
{
pvx->Ing += pvx->bias * (float)0.1; //偏差的更新周期为100ms
}else
{
pvx->Ing = (pvx->Ing > 0)?(pvx->Ing_max):(pvx->Ing_min);
}
pvx->pidout = pvx->Kp*( pvx->bias + (1/pvx->Ti)*pvx->Ing + pvx->Td*(pvx->bias - pvx->bias_previous) );
pvx->current_input += (pvx->pidout/100) * (pvx->input_max - pvx->input_min);
pv_one.bias_previous = pvx->bias; //更新前一个时刻的偏差
pvx->current_input = (pvx->current_input < pvx->pidout_max)?(pvx->current_input):(pvx->pidout_max); //pid输出限幅
pvx->current_input = (pvx->current_input > pvx->pidout_min)?(pvx->current_input):(pvx->pidout_min);
pvx->current_input = (pvx->current_input < pvx->input_max)?(pvx->current_input):(pvx->input_max); //dac输出限幅
pvx->current_input = (pvx->current_input > pvx->input_min)?(pvx->current_input):(pvx->input_min);
pvx->pvout(pvx->current_input);
}else
{
pvx->Ing = 0;
}
}
float atm_pressure = 0; //用于存放大气绝压单位0.1Kpa
void analog_ctrl(void)
{
if(ao_dwq != (float)(HoldReg[0]) / 1000) //保持寄存器值发生变化时dac输出
{
ao_dwq = (float)(HoldReg[0]) / 1000; // uA -> mA
if(ao_dwq > 25) ao_dwq = 25; //定位器控制
ao_dwq_set(ao_dwq);
}
if(ao_blf1 != (float)(HoldReg[1]) / 1000) //保持寄存器值发生变化时dac输出
{
ao_blf1 = (float)(HoldReg[1]) / 1000; // uA -> mA
prov_ctrl(ao_blf1,&pv_one); //控制比例阀1
}
if(ao_blf2 != (float)(HoldReg[2]) / 1000) //保持寄存器值发生变化时dac输出
{
ao_blf2 = (float)(HoldReg[2]) / 1000; // uA -> mA
prov_ctrl(ao_blf2,&pv_two); //控制比例阀2
}
if(it_100ms_flag_pv == 1) //每隔100ms更新一次数据
{
it_100ms_flag_pv = 0;
atm_pressure = ( (InputReg[7] - 4000)/(float)16000.0 ) * 2000; //大气绝压更新,4~20mA->0~200Kpa
//比例阀1数据更新当前气压、当前气压百分比、百分比偏差、当前输入电流单片机->比例阀)
pv_one.current_pressure = (InputReg[16] - atm_pressure)/(float)10; //Kpasensor1 A口绝压转表压
pv_one.current_percent = pv_one.current_pressure/900*100;
pv_one.bias = pv_one.target_percent - pv_one.current_percent;
//比例阀2数据更新当前气压、当前气压百分比、百分比偏差、当前输入电流单片机->比例阀)
pv_two.current_pressure = (InputReg[17] - atm_pressure)/(float)10; //Kpasensor1 B口绝压转表压
pv_two.current_percent = pv_two.current_pressure/900*100;
pv_two.bias = pv_two.target_percent - pv_two.current_percent;
}
if(it_50ms_flag_pv == 1) //每隔50ms校准一次
{
it_50ms_flag_pv = 0;
if( (CoilState[0]&(0x03)) == 0x03 ) //两个电磁阀都开启的情况下才进行校准
{
// prov_calibrate_step(&pv_one);
// prov_calibrate_step(&pv_two);
prov_calibrate_pid(&pv_one);
prov_calibrate_pid(&pv_two);
}
}
}
void prov_calibrate_step(propotion_valve *pvx)
{
pvx->cstep_wait = (pvx->cstep_wait > 254)?(pvx->cstep_wait):(pvx->cstep_wait + 1); //每100ms加一次上限255
if( pvx->cstep_wait > CSTEP_WAIT_MAX) //目标更新X秒后误差仍不符合条件时再进行微步调节
{
if( (pvx->bias > pvx->bias_area) && (pvx->bias < BIAS_MAX) ) //正偏差(目标-实际),输出偏小
{
pvx->current_input += ((pvx->bias < 1))?(pvx->cstep_gasin):(pvx->cstep_gasin*3);
pvx->current_input = (pvx->current_input <= pvx->cstep_max)?(pvx->current_input):(pvx->cstep_max); //dac输出限幅
pvx->current_input = (pvx->current_input <= pvx->input_max)?(pvx->current_input):(pvx->input_max);
pvx->pvout(pvx->current_input);
}
if( (pvx->bias < -pvx->bias_area) && (pvx->bias > -BIAS_MAX) ) //负偏差(目标-实际),输出偏大
{
pvx->current_input -= ((pvx->bias > -1))?(pvx->cstep_gasin):(pvx->cstep_gasout*3);
pvx->current_input = (pvx->current_input >= pvx->cstep_min)?(pvx->current_input):(pvx->cstep_min); //dac输出限幅
pvx->current_input = (pvx->current_input >= pvx->input_min)?(pvx->current_input):(pvx->input_min);
pvx->pvout(pvx->current_input);
}
}
}