配置软件请打开下方链接,或扫描右侧二维码下载: https://thyb.oss-cn-beijing.alivuncs.com/DCFG.exe

■ 软件操作说明

一、通过开始菜单快捷方式或桌面快捷方式打开数据采集模块配置软件,在软件左侧的**第**口上右击选择刷新,软件将自动搜索电脑上的串口,并将串口号显示在界面上;

二、通过鼠标左键点击与模块相连接的串口号,在弹出的界面中有多个功能区,如果 软件弹出**无法连接串口**提示框,请检查串口是否正常,或是否被其它软件占用;

三、串口页用于搜索模块

- 1、模块搜索用于搜索的模块信息(设备型号,通信地址、波特率、校验方式),其中一键搜索是软件向模块发送万能搜索指令(模块固件版本需在 B0.01及以上,并且同一串口上仅能连接一台模块),此功能可直接获取到模块的信息,开始搜索是从起始地址开始轮询搜索模块信息(支持所有固件版本,且同一串口上可连接多台通信地址不同的模块),直至搜索到地址为255时自动停止,停止搜索是在轮询搜索过程中提前停止搜索,搜索到的模块信息将显示在串口号下方,如上图所示,信息内容分别是:设备型号,通信地址、波特率、校验方式;
- 2、新增模块用于手动添加模块信息,如果提前已经获知模块的信息,在模块型号中选择已知模块型号,在地址中选择已知模块地址,在波特率中选择已知模块波特率,在校验方式中选择已知模块校验方式,点击新增模块,新增的信息便显示在串口号下方;
- 四、软件获取到模块信息后,直接鼠标左键点击模块信息软件将自动连接模块,并展现出通信参数页和模块功能页:
- 1、**通信参数**页用于查看模块的当前的地址,波特率,校验方式和固件版本,同时还可以设置模块的地址,波特率和校验方式,在通信参数设置区选择所要修改的地址,波特率和校验方式后点击设定按钮,如果设置成功软件将弹出提示框,此时需要重新搜索模块,如果弹出修改失败提示框则需检查是否存在故障。

- 2、330XC页用于查看模块的测量值,配置参数,以及修改配置参数
- (1)、**量程配置**,在通道下拉框中选择您要配置的通道,在量程下拉框中选择您要配置的量程,然后点击设置量程即可,如果希望所有通道设置为同一量程,可勾选统一设置后,点击设置量程。
- (2)、**工程值上下限配置**,在通道下拉框中选择您要配置的通道,工程值上下限的 输入框中输入要配置的工程值上下限,点击设置上下限即可,如果希望所有通道设置为同 一工程值上下限,可勾选统一设置后,点击设置上下限。
- (3)、**设置使能**,在通道使能配置页中的选择框选择相应通道的使能状态(勾选为使能,不勾选为禁用)后,点击设置使能即可。
 - (4) 、数据页用于查看模块的数码值,原始值和工程值。
 - (5) 、冷端页用于查看模块的冷端温度值及校准冷端。

COM1
COM3
COM4
⊜ COM8
■3304C(1#,9600,无校验
COM25

5

330XC 系列 用户手册 V2.2

330XC 系列 热电偶采集模块 用户手册(使用篇)

注意

- 请核对产品外包装, 产品标签的型号、规格是否与订货合同一致;
- 安装使用前应仔细阅读本说明书,若有疑问,请与本公司技术支持热线 联系:
- 产品应安装在安全场所;
- 仪表供电 24V 直流电源, 严禁使用 220V 交流电源;
- 严禁私自拆装仪表, 防止仪表失效或发生故障.
- 本公司保留更改产品而不事先通知用户的权利,若使用说明中的内容如与 网站、样本等资料有不符之处,以本说明书为准.

产品资料目录二维码及链接

https://th-product-data.oss-cnhangzhou.aliyuncs.com/dir.html 最新说明书二维码及链接

https://thyb.oss-cn-beijing
.aliyuncs.com/U330XC.pdf

概i术

330XC系列热电偶采集系列产品(支持的通道数及量程如下表所示),应用层采用标准MODBUS-RTU协议,适用于多种工业场合及自动化系统。方便与上位机通讯,可实现快速组网,构建监测系统。

型 号	通道数	量程
3302C	2	J、K、T、E、R、S、B、N、0~100mV
3304C	4	J、K、T、E、R、S、B、N、0~100mV

主要技术参数

输入端

通道数:如上表所示输入量程:如上表所示

采样频率: ≤8Hz(总的、支持50/60Hz工频抑制), (通道采样率 = 总采样率/使

能通道数;其中冷端补偿占用一个通道; 4 通道全使能时为 1.6Hz)

精度等级: ≤ 0.1% 冷端补偿精度: ±1℃ 输入阻抗: 1MΩ

通信端

信号类型: RS-485 数字信号

波特率: 1200、2400、4800、9600、19200、38400、57600、115200bps

校验方式: 无校验、奇校验或偶校验数据位: 8位 停止位: 1位通信协议: 标准 MODBUS-RTU 协议通信距离: 1200m(典型值)

基本参数

电 源: DC24V, 电压范围: DC 9~30V

消耗功率: <1.5W @DC 24V

隔离电压: 1500VDC (输入与通信端)

电磁兼容性: 符合 GB/T 182681 (IEC 6132-1)

适用现场设备: 组态软件、PLC、触摸屏、电脑等支持 MODBUS - RTU 协议的设备

指示灯状态

1、上电后指示灯常亮, 不亮则表明电源故障或接触不良;

2、正常通讯时, 指示灯闪烁;

3、未通信时, 指示灯闪烁, 则表明模块故障

默认出厂参数

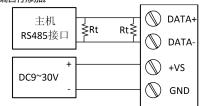
设备地址: 1 波特率: 9600bps 校验方式: 无校验

数据位: 8位 停止位: 1位

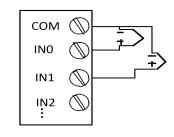
通道量程:均设置为 K 型,采集状态均使能;

使用环境

(1) 周围环境中不得有强烈振动、冲击以及大电流和火花等电磁感应影响,空气中应不含有对铬、镍、银镀层起腐蚀作用的介质,应不含有易燃、易爆的物质;

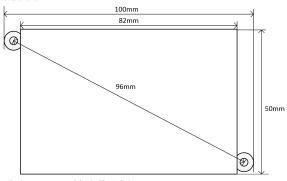

(2) 连续工作温度: -40℃~ +85℃;

(3) 相对湿度: 10%~90%RH(不结露);


接线说明

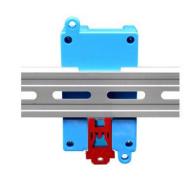
通信及电源接线图

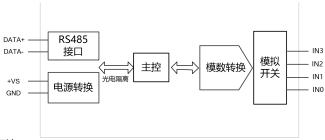
RS485通信线采用手拉手方式连接,如需星型连接请外加分路器,终端电阻Rt根据需要在通信线两端自行添加。


输入信号接线图:

■ 接线端子说明

端子名称	文字说明	
DATA+	RS-485 通讯接口正端	
DATA-	RS-485 通讯接口负端	
+VS	外接供电电源正端 (9~30V)	
GND	外接供电电源负端 (接地)	
СОМ	输入公共负端	
IN0	输入 0 通道正端	
IN1	输入 1 通道正端	
IN2	输入 2 通道正端	
IN3	输入 3 通道正端	


● 外形尺寸


备注: 高度32mm, 对角安装孔直径4mm

安装

模块采用DIN35mm导轨安装方式。导轨应符合标准号为: GB/T19334-2003的国家标准中TH35-7.5型导轨的安装尺寸规范。该标准等同于国际电工委员会IEC60715-1981的国际标准。安装必须稳定牢固。

■ 内部结构框图

备注:

双通道产品仅包含IN0和IN1;

四通道产品包含INO、IN1、IN2和IN3;

■ 通信点表

点表	属性	功能说明	取值范围及说明				
40001		40001~40004 对	0~4095 对应输入量程下限和上				
40002	16 位无符号	应	限,如 0~100mV <u>量</u> 程:				
40003	只读寄存器	通道 0~通道 3 的	0 对应 0mV,4095 对应 100mV,				
40004		测量数码值	呈线性关系,				
40009		40009~40016 对	20752 20757 -1+1/7				
40010	16 位有符号	应	-32768~32767, 对应关系: 热电偶量程: 温度值的 10 倍				
40011	只读寄存器	通道 0~通道 3 的	0~100mV : 毫伏值的 100 倍				
40012		测量原始值					
40017		40017~40024 对	-32768~32767,与工程值上下				
40018	16 位有符号	400171140024 XJ	限和测量值有关; 如: 0~100mV				
40019	只读寄存器		量程, 工程值上限为 1000, 工程				
40020		测量工程值	值下限为 0, 当接 50mV 电流时, 工程值为 500				
40101	464777	通道0工程值下限	-32768~32767,				
40102	16 位无符号 读写寄存器	通道0工程值上限	工程值下限对应量程下限				
40103		通道1工程值下限	工程值上限对应量程上限				
40104	掉电存储	通道1工程值上限	如:0~100mV 量程,传感器量				
40105	 仅固件版本:	通道2工程值下限	程为 0~100A,则可设置工程值				
40106	B0.01 及以	通道2工程值上限	下限为 0,工程值上限为 10000,				
40107	上有效	通道3工程值下限	当读取对应通道的工程值为				
40108		通道3工程值上限	3954 时,实际值为 39.54A				
			J 代码为 0x000E				
40201			K 代码为 0x000F				
	464	10001 10005 = 1	T 代码为 0x0010				
40202	16位	40201~40208 对	E 代码为 0x0011				
	读写寄存器	应通道 0~通道 3	R 代码为 0x0012				
40203	掉电存储	的输入量程	S 代码为 0x0013 B 代码为 0x0014				
40204			N 代码为 0x0014				
40204			0~100mV 代码为 0x0042				
	16 位无符号		冷端温度值,				
40227	只读寄存器		冷端温度 = (值 - 500) / 10.0				
八庆司节昭							

属性	功能说明	取值范围及说明
1 <i>c I</i> ÷	模块型号 1	0X330X(X为1、2或4)
	模块型号 2	0X4300
八跃可行品	固件版本	0X0000~0XFFFF
	心冬涌信州北	0X0001~0X00FF
	以田旭旧地址	代表设备的地址
	波特率	0: 代表 1200bps
		1: 代表 2400bps
16 位		2: 代表 4800bps
读写寄存器		3: 代表 9600bps
掉电存储		4: 代表 19200bps
		5: 代表 38400bps
		6: 代表 57600bps
		7: 代表 115200bps
	+ <u></u>	0: 无校验 1: 奇校验
	1文3並力工(2: 偶校验
	16 位 只读寄存器 16 位 读写寄存器	模块型号 1 模块型号 2

点表地址		寄存器功能说明	取值范围
00201		通道 0 热电偶断线状态	值为1时,表示热电偶断线
00202	单 Bit 只	通道 1 热电偶断线状态	值为0时,表示热电偶正常
00203	读线圈	通道 2 热电偶断线状态	仅在热电偶量程下有效
00204		通道 3 热电偶断线状态	

备注:

双通道产品仅通道0、1相关点表有效;四通道产品通道0~3相关点表均有效;

■ 数码值计算公式

量程	计算公式 (D 为输出数码值, 16 位无符号整型)
J型	D / 4095 * 1400 - 200 (°C)
K型	D / 4095 * 1550 - 200 (°C)
T型	D / 4095 * 600 - 200 (°C)
E型	D / 4095 * 1200 - 200 (°C)
R型	D / 4095 * 1810 - 50 (°C)
S型	D / 4095 * 1810 - 50 (°C)
B型	D / 4095 * 1420 + 400 (°C)
N型	D / 4095 * 1500 - 200 (°C)
0~100mV	D / 4095 * 100 (mV)

330XC 系列 热电偶采集模块 用户手册(编程篇)

\triangle

注意

- 请核对产品外包装, 产品标签的型号、规格是否与订货合同一致;
- 安装使用前应仔细阅读本说明书,若有疑问,请与本公司技术支持热线 联系;
- 产品应安装在安全场所;
- 仪表供电 24V 直流电源, 严禁使用 220V 交流电源;
- 严禁私自拆装仪表, 防止仪表失效或发生故障.
- 本公司保留更改产品而不事先通知用户的权利,若使用说明中的内容如与 网站、样本等资料有不符之处,以本说明书为准.

产品资料目录二维码及链接

https://th-product-data.oss-cn-hangzhou.aliyuncs.com/dir.html

最新说明书二维码及链接

https://thyb.oss-cn-beijing
.aliyuncs.com/U330XC.pdf

MODBUS-RTU协议

概述

MODBUS-RTU协议规定了多种功能码以实现不同的功能,330XC系列产品仅对其中部分功能码进行支持,本手册仅对用到的功能码进行讲解,330XC系列产品支持的功能码有:0X01,0x02,0X03,0X04,0X06,0X10,功能码对应的点表地址及功能说明见下表:

功能码	对应点表地址	功能说明
0X01	0XXXX	读取多个线圈 (单 Bit 数据) 状态
0X02	0XXXX	读取多个线圈 (单 Bit 数据) 状态 (0X01 可代替)
0X03	4XXXX	读取多个寄存器的值
0X04	4XXXX	读取多个寄存器的值 (0X03 可代替)
0X06	4XXXX	写入单个寄存器值 (OX10 可代替)
0X10	4XXXX	写入多个寄存器值

功能码0X01

1、主机发送的请求报文结构,其中起始地址和线圈数量以大端方式表示,起始地址需将点表地址减一,如00016的地址为0X000F,

说明	字节数	取值范围
设备地址	1 个字节	0X0001~0X00FF
功能码	1 个字节	0X01
起始地址	2 个字节	0X0000~0XFFFF
线圈数量	2 个字节	0X0001~0X0040
CRC 校验	2 个字节	0X0000~0XFFFF

2、从机返回报文结构,线圈状态的数据每个比特代表一个线圈状态1= ON 和0= OFF,第一个数据字节的LSB(最低有效位)代表起始地址的线圈状态。其它线圈依次类推,一直到这个字节的最高位为止,并在后续字节中按照低位到高位的顺序。

说明	字节数	取值范围
设备地址	1 个字节	模块的地址
功能码	1 个字节	0X01
线圈状态字节数	1 个字节	N(备注)
线圈状态	N 个字节	大端模式,高字节在前
CRC 校验	2 个字节	0X0000~0XFFFF

备注: N=线圈数量 / 8. 如果余数不等于0. 那么N=线圈数量 / 8 + 1

3、举例,读取地址为1的模块的00001~00024的24个线圈状态,

主机发送报文: (报文为16进制格式)

01	01	00	00	00	18	3C	00
模块	功能	起始地址	起始地址	线圈数量	线圈数量	CRC	CRC
地址	码	高字节	低字节	高字节	低字节	校验	校验

从机返回报文: (报文为16进制格式)

	01	01	03	01	03	07	2C	ВС
Г	模块	功能	线圈状态	线圈状	线圈状	线圈状	CRC	CRC
	地址	码	字节数	态字节 0	态字节 1	态字节2	校验	校验

从机返回的报文中共3个字节的线圈状态字节:

功能码OXOF

1、主机发送的请求报文结构,其中起始地址和寄存器数量以大端方式表示,起始地址需将点表地址减一,如00008的地址为0X0007,线圈状态的数据每个比特代表一个线圈状态1 = ON 、0 = OFF,第一个数据字节的LSB(最低有效位)代表起始地址的线圈状态。其它线圈依次类推,一直到这个字节的最高位为止,并在后续字节中按照低位到高位的顺序。

说明	字节数	取值范围
设备地址	1 个字节	0X0001~0X00FF
功能码	1 个字节	0X0F
起始地址	2个字节	0X0000~0XFFFF
线圈数量	2 个字节	0X0001~0X0040
线圈状态字节数	1 个字节	N (备注)
线圈状态	N 个字节	
CRC 校验	2 个字节	0X0000~0XFFFF

备注: N=线圈数量/8, 如果余数不等于0, 那么N=线圈数量/8 + 1

2、从机返回报文结构, 其结构就相当于主机报文的前6个字节再加2字节的CRC校验;

说明	字节数	取值范围		
设备地址 1个字节		0X0001~0X00FF		
功能码	1 个字节	0X0F		
起始地址	2 个字节	0X0000~0XFFFF		
线圈数量 2个字节		0X0001~0X0040		
CRC 校验 2 个字节		0X0000~0XFFFF		

3、举例,将地址为1的模块00017~00024,8个线圈的状态设置为:ON,OFF,ON,OFF,OFF,OFF,OFF,OFF,OFF,OFF;

主机发送报文: (报文为16进制格式)

01	0F	00	10	00	80	01	05	FF	55
模块	功能	起始地	起始地	线圈数	线圈数	线圈状	线圈状	CRC	CRC
地址	码	址高字	址低字	量高字	量低字	态字节	态字节	校验	校验
		节	节	节	节	数	0		

线圈状态字节0: 0X05 二进制为0000 0101, 从右向左 (即从字节最低位到最高位) 代表00017~00024状态为 ON, OFF, ON, OFF, OFF, OFF, OFF, OFF,

从机返回报文: (报文为16进制格式)

ĺ	01	0F	00	10	00	08	55	C8
	模块	功能	起始地址	起始地址	线圈数量	线圈数量	CRC	CRC
	地址	码	高字节	低字节	高字节	低字节	校验	校验

功能码0X03

1、主机发送的请求报文结构,其中起始地址和寄存器数量以大端方式表示,起始地址需将点表地址开头的4去除后,再减一,如40017的地址为0X0010

说明	字节数	取值范围		
设备地址 1个字节		0X0001~0X00FF		
功能码	1 个字节	0X03		
起始地址	2 个字节	0X0000~0XFFFF		
寄存器数量	2 个字节	0X0001~0X0040		
CRC 校验	2 个字节	0X0000~0XFFFF		

2、从机返回报文结构,每个寄存器占用2个字节,对于每个寄存器,第一个字节为寄存器高字节,第二个字节为寄存器低字节(即大端方式);

说明	字节数	取值范围		
设备地址 1 个字节		模块的地址		
功能码 1 个字节		0X03		
寄存器值字节数	1 个字节	2*N(备注)		
寄存器值	2*N 个字节	大端模式,高字节在前		
CRC 校验	2 个字节	0X0000~0XFFFF		

备注: N=寄存器数量

3、举例,读取地址为1的模块的40009~40010的2个寄存器的值,

主机发送报文: (报文为16进制格式)

01	03	00	08	00	02	45	с9
模块	功能	起始地址	起始地址	寄存器数	寄存器数	CRC	CRC
地址	码	高字节	低字节	量高字节	量低字节	校验	校验
11.40			CALL HALL HOLD IN S				

从机返回报文: (报文为16进制格式)

01	03	04	F1	03	F7	FF	3E	BF
模块	功能	寄存器值	寄存器	寄存器	寄存器	寄存器	CRC	CRC
地址	码	字节数	字节 0	字节 1	字节 2	字节 3	校验	校验

从机返回的报文中共4个字节的寄存器值:

字节0和字节1为寄存器40009的值, 16进制表示为0XF103,转换成16位无符号数是61699, 转换成16位有符号数是-3837, 字节2和字节3为寄存器40010的值, 16进制表示为0Xf7ff, 转换成16位无符号数是63487, 转换成16位有符号数是-2049,

功能码0X10

1、主机发送的请求报文结构,其中起始地址和寄存器数量以大端方式表示,起始地址需将点表地址开头的4去除后,再减一,如40004的地址为0X0003,每个寄存器占用2个字节,对于每个寄存器,第一个字节为寄存器高字节,第二个字节为寄存器低字节(即大端方式):

Γ	说明	字节数	取值范围					
	设备地址	1 个字节	0X0001~0X00FF					
Γ	功能码	1 个字节	0X10					
Γ	起始地址	2 个字节	0X0000~0XFFFF					
Γ	寄存器数量	2 个字节	0X0001~0X0040					
Γ	寄存器值字节数	1 个字节	2*N (备注)					
	寄存器值	2*N 个字节	大端模式,高字节在前					
CRC 校验		2 个字节	0X0000~0XFFFF					

备注: N=寄存器数量

2、从机返回报文结构,其结构就相当于主机报文的前6个字节再加2字节的CRC校验;

说明	字节数	取值范围		
设备地址	1 个字节	模块的地址		
功能码	1 个字节	0X10		
起始地址	2 个字节	0X0000~0XFFFF		
寄存器数量	2 个字节	0X0000~0X0040		
CRC 校验 2 个字节		0X0000~0XFFFF		

3、举例,将地址为1的模块40002~40003,2个寄存器的值设置为0XF003 (16位无符号: 65283,16位有符号: -4093), 0X0007(16位无符号: 7, 16位有符号: 7); 主机发送报文:

01	10	00	01	00	02	04				
模块	功能	起始地址	起始地址	寄存器数	寄存器数	寄存器值				
地址	码	高字节	低字节	量高字节	量低字节	字节数				

F0	03	00	07	В0	A1	
寄存器值	寄存器值	寄存器值	寄存器值	CRC	CRC	
字节 0	字节 1	字节 2	字节 3	校验	校验	

从机返回报文:

,, ,,	77 10 10 10 10 10 10 10 10 10 10 10 10 10							
01	10	00	01	00	02	10	08	
模块	功能	起始地址	起始地址	寄存器数	寄存器数	CRC	CRC	
地址	码	高字节	低字节	量高字节	量低字节	校验	校验	