This commit is contained in:
承诺 2024-03-27 14:01:33 +08:00
commit f5640da0db
1688 changed files with 1094297 additions and 0 deletions

38
.mxproject Normal file

File diff suppressed because one or more lines are too long

18
.vscode/c_cpp_properties.json vendored Normal file
View File

@ -0,0 +1,18 @@
{
"configurations": [
{
"name": "windows-gcc-x64",
"includePath": [
"${workspaceFolder}/**"
],
"compilerPath": "C:/TDM-GCC-64/bin/gcc.exe",
"cStandard": "${default}",
"cppStandard": "${default}",
"intelliSenseMode": "windows-gcc-x64",
"compilerArgs": [
""
]
}
],
"version": 4
}

24
.vscode/launch.json vendored Normal file
View File

@ -0,0 +1,24 @@
{
"version": "0.2.0",
"configurations": [
{
"name": "C/C++ Runner: Debug Session",
"type": "cppdbg",
"request": "launch",
"args": [],
"stopAtEntry": false,
"externalConsole": true,
"cwd": "d:/桌面/工作资料/03-阀门终检项目/FM_CCJY/Core/Src",
"program": "d:/桌面/工作资料/03-阀门终检项目/FM_CCJY/Core/Src/build/Debug/outDebug",
"MIMode": "gdb",
"miDebuggerPath": "gdb",
"setupCommands": [
{
"description": "Enable pretty-printing for gdb",
"text": "-enable-pretty-printing",
"ignoreFailures": true
}
]
}
]
}

62
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,62 @@
{
"C_Cpp_Runner.cCompilerPath": "gcc",
"C_Cpp_Runner.cppCompilerPath": "g++",
"C_Cpp_Runner.debuggerPath": "gdb",
"C_Cpp_Runner.cStandard": "",
"C_Cpp_Runner.cppStandard": "",
"C_Cpp_Runner.msvcBatchPath": "",
"C_Cpp_Runner.useMsvc": false,
"C_Cpp_Runner.warnings": [
"-Wall",
"-Wextra",
"-Wpedantic",
"-Wshadow",
"-Wformat=2",
"-Wcast-align",
"-Wconversion",
"-Wsign-conversion",
"-Wnull-dereference"
],
"C_Cpp_Runner.msvcWarnings": [
"/W4",
"/permissive-",
"/w14242",
"/w14287",
"/w14296",
"/w14311",
"/w14826",
"/w44062",
"/w44242",
"/w14905",
"/w14906",
"/w14263",
"/w44265",
"/w14928"
],
"C_Cpp_Runner.enableWarnings": true,
"C_Cpp_Runner.warningsAsError": false,
"C_Cpp_Runner.compilerArgs": [],
"C_Cpp_Runner.linkerArgs": [],
"C_Cpp_Runner.includePaths": [],
"C_Cpp_Runner.includeSearch": [
"*",
"**/*"
],
"C_Cpp_Runner.excludeSearch": [
"**/build",
"**/build/**",
"**/.*",
"**/.*/**",
"**/.vscode",
"**/.vscode/**"
],
"C_Cpp_Runner.useAddressSanitizer": false,
"C_Cpp_Runner.useUndefinedSanitizer": false,
"C_Cpp_Runner.useLeakSanitizer": false,
"C_Cpp_Runner.showCompilationTime": false,
"C_Cpp_Runner.useLinkTimeOptimization": false,
"C_Cpp_Runner.msvcSecureNoWarnings": false,
"files.associations": {
"stm32f4xx_it.h": "c"
}
}

94
Board/Inc/ads1256.h Normal file
View File

@ -0,0 +1,94 @@
#ifndef __ADS1256_H_
#define __ADS1256_H_
#include "main.h"
#define ADS1256_DRDY LL_GPIO_IsInputPinSet(ADS1256_DRDY_GPIO_Port, ADS1256_DRDY_Pin)
//#define CS_0 LL_GPIO_ResetOutputPin(SPI3_NSS_GPIO_Port,SPI3_NSS_Pin);
//#define CS_1 LL_GPIO_SetOutputPin(SPI3_NSS_GPIO_Port,SPI3_NSS_Pin);
// define commands
#define ADS1256_CMD_WAKEUP 0x00
#define ADS1256_CMD_RDATA 0x01
#define ADS1256_CMD_RDATAC 0x03
#define ADS1256_CMD_SDATAC 0x0f
#define ADS1256_CMD_RREG 0x10
#define ADS1256_CMD_WREG 0x50
#define ADS1256_CMD_SELFCAL 0xf0
#define ADS1256_CMD_SELFOCAL 0xf1
#define ADS1256_CMD_SELFGCAL 0xf2
#define ADS1256_CMD_SYSOCAL 0xf3
#define ADS1256_CMD_SYSGCAL 0xf4
#define ADS1256_CMD_SYNC 0xfc
#define ADS1256_CMD_STANDBY 0xfd
#define ADS1256_CMD_REST 0xfe
// define the ADS1256 register values
#define ADS1256_STATUS 0x00
#define ADS1256_MUX 0x01
#define ADS1256_ADCON 0x02
#define ADS1256_DRATE 0x03
#define ADS1256_IO 0x04
#define ADS1256_OFC0 0x05
#define ADS1256_OFC1 0x06
#define ADS1256_OFC2 0x07
#define ADS1256_FSC0 0x08
#define ADS1256_FSC1 0x09
#define ADS1256_FSC2 0x0A
// define multiplexer codes
#define ADS1256_MUXP_AIN0 0x00
#define ADS1256_MUXP_AIN1 0x10
#define ADS1256_MUXP_AIN2 0x20
#define ADS1256_MUXP_AIN3 0x30
#define ADS1256_MUXP_AIN4 0x40
#define ADS1256_MUXP_AIN5 0x50
#define ADS1256_MUXP_AIN6 0x60
#define ADS1256_MUXP_AIN7 0x70
#define ADS1256_MUXP_AINCOM 0x80
#define ADS1256_MUXN_AIN0 0x00
#define ADS1256_MUXN_AIN1 0x01
#define ADS1256_MUXN_AIN2 0x02
#define ADS1256_MUXN_AIN3 0x03
#define ADS1256_MUXN_AIN4 0x04
#define ADS1256_MUXN_AIN5 0x05
#define ADS1256_MUXN_AIN6 0x06
#define ADS1256_MUXN_AIN7 0x07
#define ADS1256_MUXN_AINCOM 0x08
// define gain codes
#define ADS1256_GAIN_1 0x00
#define ADS1256_GAIN_2 0x01
#define ADS1256_GAIN_4 0x02
#define ADS1256_GAIN_8 0x03
#define ADS1256_GAIN_16 0x04
#define ADS1256_GAIN_32 0x05
#define ADS1256_GAIN_64 0x06
//#define ADS1256_GAIN_64 0x07
// define drate codes
#define ADS1256_DRATE_30000SPS 0xF0
#define ADS1256_DRATE_15000SPS 0xE0
#define ADS1256_DRATE_7500SPS 0xD0
#define ADS1256_DRATE_3750SPS 0xC0
#define ADS1256_DRATE_2000SPS 0xB0
#define ADS1256_DRATE_1000SPS 0xA1
#define ADS1256_DRATE_500SPS 0x92
#define ADS1256_DRATE_100SPS 0x82
#define ADS1256_DRATE_60SPS 0x72
#define ADS1256_DRATE_50SPS 0x63
#define ADS1256_DRATE_30SPS 0x53
#define ADS1256_DRATE_25SPS 0x43
#define ADS1256_DRATE_15SPS 0x33
#define ADS1256_DRATE_10SPS 0x23
#define ADS1256_DRATE_5SPS 0x13
#define ADS1256_DRATE_2_5SPS 0x03
long double ADS1256ReadData(uint8_t channel);
void ADS1256_Init(void);
void adc_task(void);
#endif

31
Board/Inc/dac7311.h Normal file
View File

@ -0,0 +1,31 @@
#ifndef __DAC7311_H__
#define __DAC7311_H__
#include "main.h"
//#include "sys.h"
#include "stm32f4xx.h"
#define AO1_DIN_H() LL_GPIO_SetOutputPin(AO1_SPI5_MOSI_GPIO_Port, AO1_SPI5_MOSI_Pin)
#define AO1_DIN_L() LL_GPIO_ResetOutputPin(AO1_SPI5_MOSI_GPIO_Port, AO1_SPI5_MOSI_Pin)
#define AO1_SCLK_H() LL_GPIO_SetOutputPin(AO1_SPI5_SCK_GPIO_Port, AO1_SPI5_SCK_Pin)
#define AO1_SCLK_L() LL_GPIO_ResetOutputPin(AO1_SPI5_SCK_GPIO_Port, AO1_SPI5_SCK_Pin)
#define AO1_SYNC_H() LL_GPIO_SetOutputPin(AO1_SPI5_NSS_GPIO_Port, AO1_SPI5_NSS_Pin)
#define AO1_SYNC_L() LL_GPIO_ResetOutputPin(AO1_SPI5_NSS_GPIO_Port, AO1_SPI5_NSS_Pin)
#define AO2_DIN_H() LL_GPIO_SetOutputPin(AO2_SPI6_MOSI_GPIO_Port, AO2_SPI6_MOSI_Pin)
#define AO2_DIN_L() LL_GPIO_ResetOutputPin(AO2_SPI6_MOSI_GPIO_Port, AO2_SPI6_MOSI_Pin)
#define AO2_SCLK_H() LL_GPIO_SetOutputPin(AO2_SPI6_SCK_GPIO_Port, AO2_SPI6_SCK_Pin)
#define AO2_SCLK_L() LL_GPIO_ResetOutputPin(AO2_SPI6_SCK_GPIO_Port, AO2_SPI6_SCK_Pin)
#define AO2_SYNC_H() LL_GPIO_SetOutputPin(AO2_SPI6_NSS_GPIO_Port, AO2_SPI6_NSS_Pin)
#define AO2_SYNC_L() LL_GPIO_ResetOutputPin(AO2_SPI6_NSS_GPIO_Port, AO2_SPI6_NSS_Pin)
void delay(uint8_t us);
void dac7311_init(void);
void ao1_write(uint16_t Data);
void ao2_write(uint16_t Data);
void ao1_set(float current);
void ao2_set(float current);
#endif

19
Board/Inc/hc165.h Normal file
View File

@ -0,0 +1,19 @@
/*** 74hc165.h ***/
#ifndef _74HC165_H
#define _74HC165_H
#include "main.h"
#define HC165_CLK_H() LL_GPIO_SetOutputPin(HC165_CLK_GPIO_Port, HC165_CLK_Pin)
#define HC165_CLK_L() LL_GPIO_ResetOutputPin(HC165_CLK_GPIO_Port, HC165_CLK_Pin)//HC165时钟上升沿触发
#define HC165_LD_H() LL_GPIO_SetOutputPin(HC165_LD_GPIO_Port, HC165_LD_Pin)
#define HC165_LD_L() LL_GPIO_ResetOutputPin(HC165_LD_GPIO_Port, HC165_LD_Pin)//并行数据输入使能,低电平有效
#define HC165_INH_H() LL_GPIO_SetOutputPin(HC165_INH_GPIO_Port, HC165_INH_Pin)
#define HC165_INH_L() LL_GPIO_ResetOutputPin(HC165_INH_GPIO_Port, HC165_INH_Pin)//时钟使能,低电平有效
#define HC165_DAT_OUT LL_GPIO_IsInputPinSet(HC165_DAT_GPIO_Port,HC165_DAT_Pin) //读取串行数据输出引脚电平
void _74hc165_init(void);
uint16_t _74hc165_read_byte(void);
#endif

25
Board/Inc/hc595.h Normal file
View File

@ -0,0 +1,25 @@
#ifndef __HC595_H__
#define __HC595_H__
#include "main.h"
typedef struct
{
GPIO_TypeDef* sck_port;
uint16_t sck_pin;
GPIO_TypeDef* data_port;
uint16_t data_pin;
GPIO_TypeDef* rck_port;
uint16_t rck_pin;
GPIO_TypeDef* en_port;
uint16_t en_pin;
} T_HC595_PIN;
extern const T_HC595_PIN hc595;
void hc595_init(const T_HC595_PIN *pin);
void hc595_deInit(const T_HC595_PIN *pin);
void hc595_writeStr(const T_HC595_PIN *pin, uint8_t *data, uint16_t length);
void io_output(void);
#endif

62
Board/Inc/laser.h Normal file
View File

@ -0,0 +1,62 @@
#ifndef __LASER_H
#define __LASER_H
#include "main.h"
#define RS485_PORT UART_NUM_5
#define RS485_REC_LEN 50u
#define STATUS_DEFAULT 1 // 上电后默认状态 :激光开启,调零关闭后再开启
typedef enum
{
LASER_IDEL = 0,
LASER_CONNECT,
LASER_OPEN_STATUS,
LASER_ZERO_STATUS_CLOSE,
LASER_ZERO_STATUS_OPEN,
LASER_DISTANCE,
LASER_READY,
} laser_statue_e;
/**
* @bref
*/
typedef struct sm_event_s
{
laser_statue_e sig;
void (*event)(void);
} laser_event_t;
typedef void (*send_data_cb_t)(USART_TypeDef *huart, uint8_t *data, uint16_t len); // 发送数据
typedef struct
{
volatile laser_statue_e state; // 状态机状态
bool connect; // 连接状态
bool open_status; // 激光开启状态
bool zero_status; // 调零状态
float distance; // 测定值
send_data_cb_t send_data_cb; // 发送数据回调函数,外部传入
// 以下是指令部分
void (*command_device_connect_req)(void); // 设备是否连接
void (*command_open_status_req)(void); // 激光开启状态查询
void (*command_open_status_write_req)(bool); // 激光开启OR关闭
void (*command_distance_read_req)(void); // 测定值读出
void (*command_zero_status_req)(void); // 调零状态查询
void (*command_zero_status_write_req)(bool); // 调零状态开启OR关闭
} laser_t;
extern laser_t laser_handle;
extern laser_event_t laser_event[];
extern void laser_init(send_data_cb_t cb);
void laser_rx_cb(void);
void uart2_init(void);
void cmd_parsing(char *str);
void laser_task(void);
#endif

51
Board/Inc/mf.h Normal file
View File

@ -0,0 +1,51 @@
#ifndef __MF_H_
#define __MF_H_
#include "main.h"
#define MF4700_ADDR 0x01
#define MF5000_ADDR 0x02
//功能码
#define Read_Hold 0x03 //读取一个或多个连续的保持寄存器的值
#define Write_Single 0x06 //把具体二进制值装入一个保持寄存器
#define Error_Diag 0x08 //检查主设备与流量计之间的通讯是否正常
#define Write_Multi 0x16 //把具体二进制值装入多个连续的保持寄存器
//寄存器地址
#define MF4700_Modbus_Addr 0x01 //Modbus地址
#define MF4700_Ins_Flow_Addr 0x02 //瞬时流量 0x02~0x03
#define MF4700_Cum_Flow_Addr 0x04 //累积总量 0x04~0x06
#define MF4700_Baud_Rate_Addr 0x15 //波特率
#define MF4700_GCF_Addr 0x16 //GCF 气体修正系数
#define MF4700_Res_Tim_Addr 0x17 //响应时间
#define MF4700_Auto_Zero_Addr 0x27 //自动校零 写入指定数据0xAA55
#define MF4700_Upper_Limit_Alarm 0x31 //下限报警
#define MF4700_Lower_Limit_Alarm 0x33 //上限报警
#define MF4700_Write_Protec 0x14 //写保护寄存器 写入指定数据0xAA55
#define MF5000_Modbus_Addr 0x81 //Modbus地址
#define MF5000_Ins_Flow_Addr 0x3A //瞬时流量 0x3A~0x3B
#define MF5000_Cum_Flow_Addr 0x3C //累积总量 0x3C~0x3E
#define MF5000_Baud_Rate_Addr 0x82 //波特率
#define MF5000_GCF_Addr 0x8B //GCF 气体修正系数
#define MF5000_Unit_Addr 0x90 //单位
#define MF5000_Code_Addr 0xAE //密码 0xAE~0xAF
#define MF5000_Auto_Zero_Addr 0xF0 //自动校零 写入指定数据0xAA55
#define MF5000_Clear_Addr 0xF2 //清除累计总量 写入指定数据0x0001
#define MF5000_Write_Protec 0xFF //写保护寄存器 写入指定数据0xAA55
/*在除Modbus地址和波特率外的其他修改操作前均需先操作写保护寄存器临时关闭写保护功能。
60*/
#define General_Data 0xAA55 //指定数据,用于自动校零和解除写保护
void read_mf4700_flow(void);
void read_mf5000_flow(void);
void mf4700_zero(void);
void mf5000_zero(void);
#endif

72
Board/Inc/ms5803.h Normal file
View File

@ -0,0 +1,72 @@
#ifndef __MS5803_H__
#define __MS5803_H__
#include "math.h"
#include "string.h"
#include "main.h"
/* Size of buffer */
#define BUFFERSIZE (COUNTOF(aTxBuffer) - 1)
//#define SetCS() HAL_GPIO_WritePin(SPI1_NSS1_GPIO_Port,SPI1_NSS1_Pin,GPIO_PIN_SET)
//#define ClrCS() HAL_GPIO_WritePin(SPI1_NSS1_GPIO_Port,SPI1_NSS1_Pin,GPIO_PIN_RESET)
//************************CMD*********************************
#define RESET 0x1E
#define CD1_256 0x40 //OSR=256
#define CD1_512 0x42 //OSR=512
#define CD1_1024 0x44 //OSR=256
#define CD1_2048 0x46 //OSR=256
#define CD1_4096 0x48 //OSR=256
#define CD2_256 0x50 //OSR=256
#define CD2_512 0x52 //OSR=512
#define CD2_1024 0x54 //OSR=256
#define CD2_2048 0x56 //OSR=256
#define CD2_4096 0x58 //OSR=256
#define ADC_Read 0x00
#define Cof1 0xA2
#define Cof2 0xA4
#define Cof3 0xA6
#define Cof4 0xA8
#define Cof5 0xAA
#define Cof6 0xAC
//#define CRC 0xAE
//***********************************************************
typedef volatile struct
{
uint16_t C1[8]; //Pressure sensitivity
uint16_t C2[8]; //Pressure offset
uint16_t C3[8]; //Temperature coefficient of pressure sensitivity
uint16_t C4[8]; //Temperature coefficient of pressure offset
uint16_t C5[8]; //Reference temperature
uint16_t C6[8]; //Temperature coefficient of the temperature
}PromVar;
/* Exported macro ------------------------------------------------------------*/
//#define COUNTOF(__BUFFER__) (sizeof(__BUFFER__) / sizeof(*(__BUFFER__)))
/* Exported functions ------------------------------------------------------- */
extern volatile int32_t CurrentTemp,CurrentPress;
extern uint8_t NSS_Select;
int SPI_Init(void);
void SetCS(void);
void ClrCS(void);
void MS5803Init(void);
void StartCalculation(void);
void ms5803_task(void);
#endif
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

339
Board/Src/ads1256.c Normal file
View File

@ -0,0 +1,339 @@
#include "ADS1256.h"
#include "spi.h"
unsigned int sum;
long ulResult;
long double ldVolutage;
//-----------------------------------------------------------------//
// 功 能ADS1256 写数据
// 入口参数: /
// 出口参数: /
// 全局变量: /
// 备 注: 向ADS1256中地址为regaddr的寄存器写入一个字节databyte
//-----------------------------------------------------------------//
void ADS1256WREG(unsigned char regaddr,unsigned char databyte)
{
unsigned char cmd;
//CS_0;
while(ADS1256_DRDY);//当AD2_DRDY为低时才能写寄存器
//向寄存器写入数据地址
cmd = ADS1256_CMD_WREG|(regaddr & 0x0F);
HAL_SPI_Transmit(&hspi3, &cmd, 1, 10);
//写入数据的个数n-1
cmd = 0x00;
HAL_SPI_Transmit(&hspi3, &cmd, 1, 10);
//向regaddr地址指向的寄存器写入数据databyte
HAL_SPI_Transmit(&hspi3, &databyte, 1, 10);
//CS_1;
}
//初始化ADS1256
void ADS1256_Init(void)
{
//CS_0;
LL_GPIO_SetOutputPin(ADS1256_PDWN_GPIO_Port,ADS1256_PDWN_Pin);
ADS1256WREG(ADS1256_STATUS,0x06);// 高位在前、校准、使用缓冲
ADS1256WREG(ADS1256_MUX,ADS1256_MUXP_AIN0 | ADS1256_MUXN_AINCOM);// 初始化端口A0为+AINCOM位-
ADS1256WREG(ADS1256_ADCON,0x00);// 放大倍数1
ADS1256WREG(ADS1256_DRATE,ADS1256_DRATE_100SPS);// 数据30000sps
ADS1256WREG(ADS1256_IO,0x00);
}
//读取AD值
long double ADS1256ReadData(uint8_t channel)
{
//unsigned char data1,data2,data3;
unsigned char cmd;
unsigned char data[3];
while(ADS1256_DRDY);
//切换通道
//注意:本次写入的新通道在下次读取时才会生效,本次读到的是上一次的值
switch(channel)
{
case 0:
ADS1256WREG(ADS1256_MUX, ADS1256_MUXP_AIN0 | ADS1256_MUXN_AINCOM);
break;
case 1:
ADS1256WREG(ADS1256_MUX, ADS1256_MUXP_AIN1 | ADS1256_MUXN_AINCOM);
break;
case 2:
ADS1256WREG(ADS1256_MUX, ADS1256_MUXP_AIN2 | ADS1256_MUXN_AINCOM);
break;
case 3:
ADS1256WREG(ADS1256_MUX, ADS1256_MUXP_AIN3 | ADS1256_MUXN_AINCOM);
break;
case 4:
ADS1256WREG(ADS1256_MUX, ADS1256_MUXP_AIN4 | ADS1256_MUXN_AINCOM);
break;
case 5:
ADS1256WREG(ADS1256_MUX, ADS1256_MUXP_AIN5 | ADS1256_MUXN_AINCOM);
break;
case 6:
ADS1256WREG(ADS1256_MUX, ADS1256_MUXP_AIN6 | ADS1256_MUXN_AINCOM);
break;
case 7:
ADS1256WREG(ADS1256_MUX, ADS1256_MUXP_AIN7 | ADS1256_MUXN_AINCOM);
break;
}
//CS_0;
cmd = ADS1256_CMD_SYNC;
HAL_SPI_Transmit(&hspi3, &cmd, 1, 10);
cmd = ADS1256_CMD_WAKEUP;
HAL_SPI_Transmit(&hspi3, &cmd, 1, 10);
//发送单次读命令
cmd = ADS1256_CMD_RDATA;
HAL_SPI_Transmit(&hspi3, &cmd, 1, 10);
//读24位数据
HAL_SPI_Receive(&hspi3, (uint8_t *)data, 3, 10);
// HAL_SPI_Receive(&hspi3, &data1, 1, 10);
// HAL_SPI_Receive(&hspi3, &data2, 1, 10);
// HAL_SPI_Receive(&hspi3, &data3, 1, 10);
// sum = (unsigned int)(data1<<16)|(data2<<8)|data3;
sum = (unsigned int)(data[0]<<16)|(data[1]<<8)|data[2];
//CS_1;
//sum = 0x7fffff - sum;
//单位转换为mV (VREF=2.5V)
ulResult = sum;
if(ulResult & 0x800000)
{
ulResult = ~(unsigned long)ulResult;
ulResult &= 0x7fffff;
ulResult += 1;
ulResult = -ulResult;
ldVolutage = (long double)ulResult*0.000596046518808;
}
else
ldVolutage = (long double)ulResult*0.000596046518808;
return ldVolutage;
}
void adc_task(void)
{
LL_ADC_REG_StartConversionSWStart(ADC1);
InputReg[2] = (uint16_t)((ADS1256ReadData(1) * 10));// - 1507.8) / 0.082);//阀位反馈0-25000uA
// //分段标定,采样值减去段首值除以标定后的增益加段首的理论值
// if(InputReg[2] <= 18312)
// {
// InputReg[2] = (uint16_t)((float)(InputReg[2] - 15036) / 0.819f) + 0 ;
// }
// else if(InputReg[2] > 18312 && InputReg[2] <= 21588)
// {
// InputReg[2] = (uint16_t)((float)(InputReg[2] - 18312) / 0.819f) + 4000 ;
// }
// else if(InputReg[2] > 21588 && InputReg[2] <= 24864)
// {
// InputReg[2] = (uint16_t)((float)(InputReg[2] - 21588) / 0.819f) + 8000 ;
// }
// else if(InputReg[2] > 24864 && InputReg[2] <= 28139)
// {
// InputReg[2] = (uint16_t)((float)(InputReg[2] - 24864) / 0.81875f) + 12000 ;
// }
// else if(InputReg[2] > 28139 && InputReg[2] <= 31414)
// {
// InputReg[2] = (uint16_t)((float)(InputReg[2] - 28139) / 0.81875f) + 16000 ;
// }
// else
// {
// InputReg[2] = (uint16_t)((float)(InputReg[2] - 31414) / 0.81875f) + 20000 ;
// }
InputReg[3] = (uint16_t)((ADS1256ReadData(2) * 10));// - 1507.9) / 0.082);//阀前压力0-25000uA
// //分段标定,采样值减去段首值除以标定后的增益加段首的理论值
// if(InputReg[3] <= 18312)
// {
// InputReg[3] = (uint16_t)((float)(InputReg[3] - 15037) / 0.81875f) + 0 ;
// }
// else if(InputReg[3] > 18312 && InputReg[3] <= 21587)
// {
// InputReg[3] = (uint16_t)((float)(InputReg[3] - 18312) / 0.81875f) + 4000 ;
// }
// else if(InputReg[3] > 21587 && InputReg[3] <= 24862)
// {
// InputReg[3] = (uint16_t)((float)(InputReg[3] - 21587) / 0.81875f) + 8000 ;
// }
// else if(InputReg[3] > 24862 && InputReg[3] <= 28137)
// {
// InputReg[3] = (uint16_t)((float)(InputReg[3] - 24862) / 0.81875f) + 12000 ;
// }
// else if(InputReg[3] > 28137 && InputReg[3] <= 31410)
// {
// InputReg[3] = (uint16_t)((float)(InputReg[3] - 28137) / 0.81825f) + 16000 ;
// }
// else
// {
// InputReg[3] = (uint16_t)((float)(InputReg[3] - 31410) / 0.81825f) + 20000 ;
// }
InputReg[11] = (uint16_t)((ADS1256ReadData(3) * 10));// - 1507.8) / 0.082);//ADS1256数据备用0-25000uA
// //分段标定,采样值减去段首值除以标定后的增益加段首的理论值
// if(InputReg[11] <= 18311)
// {
// InputReg[11] = (uint16_t)((float)(InputReg[11] - 15032) / 0.81975f) + 0 ;
// }
// else if(InputReg[11] > 18311 && InputReg[11] <= 21590)
// {
// InputReg[11] = (uint16_t)((float)(InputReg[11] - 18311) / 0.81975f) + 4000 ;
// }
// else if(InputReg[11] > 21590 && InputReg[11] <= 24868)
// {
// InputReg[11] = (uint16_t)((float)(InputReg[11] - 21590) / 0.8195f) + 8000 ;
// }
// else if(InputReg[11] > 24868 && InputReg[11] <= 28143)
// {
// InputReg[11] = (uint16_t)((float)(InputReg[11] - 24868) / 0.81975f) + 12000 ;
// }
// else if(InputReg[11] > 28143 && InputReg[11] <= 31419)
// {
// InputReg[11] = (uint16_t)((float)(InputReg[11] - 28143) / 0.81925f) + 16000 ;
// }
// else
// {
// InputReg[11] = (uint16_t)((float)(InputReg[11] - 31419) / 0.81925f) + 20000 ;
// }
InputReg[12] = (uint16_t)((ADS1256ReadData(4) * 10));// - 1507.8) / 0.082);//ADS1256数据备用0-25000uA
// //分段标定,采样值减去段首值除以标定后的增益加段首的理论值
// if(InputReg[12] <= 18313)
// {
// InputReg[12] = (uint16_t)((float)(InputReg[12] - 15036) / 0.81925f) + 0 ;
// }
// else if(InputReg[12] > 18313 && InputReg[12] <= 21590)
// {
// InputReg[12] = (uint16_t)((float)(InputReg[12] - 18313) / 0.81925f) + 4000 ;
// }
// else if(InputReg[12] > 21590 && InputReg[12] <= 24867)
// {
// InputReg[12] = (uint16_t)((float)(InputReg[12] - 21590) / 0.81925f) + 8000 ;
// }
// else if(InputReg[12] > 24867 && InputReg[12] <= 28143)
// {
// InputReg[12] = (uint16_t)((float)(InputReg[12] - 24867) / 0.819f) + 12000 ;
// }
// else if(InputReg[12] > 28143 && InputReg[12] <= 31419)
// {
// InputReg[12] = (uint16_t)((float)(InputReg[12] - 28143) / 0.819f) + 16000 ;
// }
// else
// {
// InputReg[12] = (uint16_t)((float)(InputReg[12] - 31419) / 0.819f) + 20000 ;
// }
InputReg[13] = (uint16_t)((ADS1256ReadData(5) * 10));// - 1507.6) / 0.082);//ADS1256数据备用0-25000uA
// //分段标定,采样值减去段首值除以标定后的增益加段首的理论值
// if(InputReg[13] <= 18312)
// {
// InputReg[13] = (uint16_t)((float)(InputReg[13] - 15035) / 0.81925f) + 0 ;
// }
// else if(InputReg[13] > 18312 && InputReg[13] <= 21589)
// {
// InputReg[13] = (uint16_t)((float)(InputReg[13] - 18312) / 0.81925f) + 4000 ;
// }
// else if(InputReg[13] > 21589 && InputReg[13] <= 24866)
// {
// InputReg[13] = (uint16_t)((float)(InputReg[13] - 21589) / 0.81925f) + 8000 ;
// }
// else if(InputReg[13] > 24866 && InputReg[13] <= 28142)
// {
// InputReg[13] = (uint16_t)((float)(InputReg[13] - 24866) / 0.819f) + 12000 ;
// }
// else if(InputReg[13] > 28142 && InputReg[13] <= 31417)
// {
// InputReg[13] = (uint16_t)((float)(InputReg[13] - 28142) / 0.81875f) + 16000 ;
// }
// else
// {
// InputReg[13] = (uint16_t)((float)(InputReg[13] - 31417) / 0.81875f) + 20000 ;
// }
InputReg[14] = (uint16_t)((ADS1256ReadData(6) * 10));// - 1508.1) / 0.082);//ADS1256数据备用0-25000uA
// //分段标定,采样值减去段首值除以标定后的增益加段首的理论值
// if(InputReg[14] <= 18308)
// {
// InputReg[14] = (uint16_t)((float)(InputReg[14] - 15034) / 0.8185f) + 0 ;
// }
// else if(InputReg[14] > 18308 && InputReg[14] <= 21581)
// {
// InputReg[14] = (uint16_t)((float)(InputReg[14] - 18308) / 0.81825f) + 4000 ;
// }
// else if(InputReg[14] > 21581 && InputReg[14] <= 24854)
// {
// InputReg[14] = (uint16_t)((float)(InputReg[14] - 21581) / 0.81825f) + 8000 ;
// }
// else if(InputReg[14] > 24854 && InputReg[14] <= 28127)
// {
// InputReg[14] = (uint16_t)((float)(InputReg[14] - 24854) / 0.81825f) + 12000 ;
// }
// else if(InputReg[14] > 28127 && InputReg[14] <= 31400)
// {
// InputReg[14] = (uint16_t)((float)(InputReg[14] - 28127) / 0.81825f) + 16000 ;
// }
// else
// {
// InputReg[14] = (uint16_t)((float)(InputReg[14] - 31400) / 0.81825f) + 20000 ;
// }
InputReg[15] = (uint16_t)((ADS1256ReadData(7) * 10));// - 1507.6) / 0.082);//ADS1256数据备用0-25000uA
// //分段标定,采样值减去段首值除以标定后的增益加段首的理论值
// if(InputReg[15] <= 18312)
// {
// InputReg[15] = (uint16_t)((float)(InputReg[15] - 15035) / 0.81925f) + 0 ;
// }
// else if(InputReg[15] > 18312 && InputReg[15] <= 21589)
// {
// InputReg[15] = (uint16_t)((float)(InputReg[15] - 18312) / 0.81925f) + 4000 ;
// }
// else if(InputReg[15] > 21589 && InputReg[15] <= 24865)
// {
// InputReg[15] = (uint16_t)((float)(InputReg[15] - 21589) / 0.819f) + 8000 ;
// }
// else if(InputReg[15] > 24865 && InputReg[15] <= 28141)
// {
// InputReg[15] = (uint16_t)((float)(InputReg[15] - 24865) / 0.819f) + 12000 ;
// }
// else if(InputReg[15] > 28141 && InputReg[15] <= 31416)
// {
// InputReg[15] = (uint16_t)((float)(InputReg[15] - 28141) / 0.81875f) + 16000 ;
// }
// else
// {
// InputReg[15] = (uint16_t)((float)(InputReg[15] - 31416) / 0.81875f) + 20000 ;
// }
InputReg[16] = (uint16_t)((ADS1256ReadData(0) * 10));// - 1507.8) / 0.082);//ADS1256数据备用0-25000uA
// //分段标定,采样值减去段首值除以标定后的增益加段首的理论值
// if(InputReg[16] <= 18312)
// {
// InputReg[16] = (uint16_t)((float)(InputReg[16] - 15035) / 0.81925f) + 0 ;
// }
// else if(InputReg[16] > 18312 && InputReg[16] <= 21588)
// {
// InputReg[16] = (uint16_t)((float)(InputReg[16] - 18312) / 0.819f) + 4000 ;
// }
// else if(InputReg[16] > 21588 && InputReg[16] <= 24864)
// {
// InputReg[16] = (uint16_t)((float)(InputReg[16] - 21588) / 0.819f) + 8000 ;
// }
// else if(InputReg[16] > 24864 && InputReg[16] <= 28140)
// {
// InputReg[16] = (uint16_t)((float)(InputReg[16] - 24864) / 0.819f) + 12000 ;
// }
// else if(InputReg[16] > 28140 && InputReg[16] <= 31416)
// {
// InputReg[16] = (uint16_t)((float)(InputReg[16] - 28140) / 0.819f) + 16000 ;
// }
// else
// {
// InputReg[16] = (uint16_t)((float)(InputReg[16] - 31416) / 0.819f) + 20000 ;
// }
}

105
Board/Src/dac7311.c Normal file
View File

@ -0,0 +1,105 @@
#include "dac7311.h"
int cnum = 0;
void delay(uint8_t us)
{
for(; us !=0; us--);
}
void dac7311_init(void)
{
AO1_SYNC_H();
AO1_SCLK_L();
AO2_SYNC_H();
AO2_SCLK_L();
}
void ao1_write(uint16_t Data)
{
uint16_t temp;
uint8_t ui;
temp=Data << 2;
temp &= 0x3FFF;//设置模式为Normal
AO1_SYNC_H();
AO1_SCLK_H();
delay(10);
AO1_SYNC_L();//使能输入移位寄存器
delay(10);
for(ui=0; ui<16; ui++)
{
AO1_SCLK_H();
if(0x8000 == (temp & 0x8000))
{
AO1_DIN_H();
}
else
{
AO1_DIN_L();
}
delay(10);
AO1_SCLK_L();
delay(10);
temp <<=1;
}
AO1_SYNC_H();
}
void ao2_write(uint16_t Data)
{
uint16_t temp;
uint8_t ui;
temp=Data << 2;
temp &= 0x3FFF;//设置模式为Normal
AO2_SYNC_H();
AO2_SCLK_H();
delay(10);
AO2_SYNC_L();//使能输入移位寄存器
delay(10);
for(ui=0; ui<16; ui++)
{
AO2_SCLK_H();
if(0x8000 == (temp & 0x8000))
{
AO2_DIN_H();
}
else
{
AO2_DIN_L();
}
delay(10);
AO2_SCLK_L();
delay(10);
temp <<=1;
}
AO2_SYNC_H();
}
void ao1_set(float current)
{
uint16_t data = 0;
current = current * 100;//电流转为电压
data = (current * 4096) / 3300;
cnum = data;
ao1_write(data);
}
void ao2_set(float current)
{
uint16_t data = 0;
current = current * 100;//电流转为电压
data = (current * 4096) / 3300;
ao2_write(data);
}

50
Board/Src/hc165.c Normal file
View File

@ -0,0 +1,50 @@
#include "hc165.h"
//初始化74hc165
void _74hc165_init(void)
{
HC165_INH_L(); //初始化使能时钟,后面就不需再使能
HC165_LD_H(); //LD拉高不读取按键状态
HC165_CLK_H(); //时钟拉高,便于产生上升沿
}
unsigned int date_t = 0;
//读取74HC165
uint16_t _74hc165_read_byte(void)
{
unsigned char i;
unsigned int temp = 0;
HC165_LD_L(); //LD拉低读取按键状态
delay_ms(1);
HC165_LD_H(); //LD拉高停止按键读取
delay_ms(1);
if(HC165_DAT_OUT == 1) //等于1即并行输入D7引脚的按键被按下
{
temp |= 0x01; //最低位置1表示按键被按下反之则没按键被按下
}
for(i = 0; i < 15; i ++) //因为最高位不用移位即可读取,故循环(8-1)次依次把次高位移到最高位第一级74HC165优先读取
{
temp = temp << 1;
HC165_CLK_L(); //HC165_CLK = 0 ——> HC165_CLK = 1 产生上升沿次高位D(n-1)移到高位D(n)
delay_us(10);
HC165_CLK_H();
delay_us(5);
if(HC165_DAT_OUT == 1)
{
temp |= 0x01;
}
delay_us(5);
}
return temp;
// date = temp;
// date_t = temp;
// //将16位数据分离为两个8位数据
// date[0] = (unsigned char)(temp & 0x00ff); //第二级74HC165的数据
// date[1] = (unsigned char)((temp >> 8) & 0x00ff);//第一级74HC165的数据
}

202
Board/Src/hc595.c Normal file
View File

@ -0,0 +1,202 @@
#include "hc595.h"
/******************
HC595的功能引脚
MX配置完成
*******************/
const T_HC595_PIN hc595 =
{
.sck_port = HC595_SRCLK_GPIO_Port,
.sck_pin = HC595_SRCLK_Pin, //数据输入时钟线
.data_port = HC595_SER_GPIO_Port,
.data_pin = HC595_SER_Pin, //数据线
.rck_port = HC595_RCLK_GPIO_Port,
.rck_pin = HC595_RCLK_Pin, //输出存储器锁存时钟线
.en_port = HC595_OE_GPIO_Port,
.en_pin = HC595_OE_Pin //芯片使能
};
/******************
hc595Delay
us级延迟
cnt--us值
*******************/
void hc595_delay(volatile uint16_t cnt)
{
while(cnt--)
continue;
}
/******************************
hc595Init
hc595的使能脚(EN)
pin--hc595引脚结构体
0-- 1--
*******************************/
void hc595_init(const T_HC595_PIN *pin)
{
LL_GPIO_ResetOutputPin(pin->en_port, pin->en_pin);
LL_GPIO_SetOutputPin(HC595_SRCLR_GPIO_Port, HC595_SRCLR_Pin);
}
/******************************
hc595DeInit
hc595的使能脚(EN)
pin--hc595引脚结构体
0-- 1--
*******************************/
void hc595_deInit(const T_HC595_PIN *pin)
{
LL_GPIO_SetOutputPin(pin->en_port, pin->en_pin);
}
/******************************
hc595WriteStr
hc595输出字符
pin-- data-- length--
1--QH=QGQF
2CLK->
RCK->
HC595的特性8
8
9(SQH)HC595引脚14(SI)
*******************************/
void hc595_writeStr(const T_HC595_PIN *pin, uint8_t *data, uint16_t length)
{
uint16_t i;
uint8_t byte;
data += length - 1; //等价于data[length - 1]
while(length--)
{
byte = *data--;//取数组data[length - 1]赋予byte然后再--data[length - 1]。
for(i = 0; i < 8; i++)
{
LL_GPIO_ResetOutputPin(pin->sck_port, pin->sck_pin); //clk = 0 保持缓存区状态
if(byte & 0x80) //从高位开始发送
{
LL_GPIO_SetOutputPin(pin->data_port, pin->data_pin);//data=1
}
else
{
LL_GPIO_ResetOutputPin(pin->data_port, pin->data_pin);//data=0
}
byte <<= 1;
hc595_delay(10);//us
LL_GPIO_SetOutputPin(pin->sck_port, pin->sck_pin); //clk = 1 存储数据至缓存区
hc595_delay(10);//us
}
}
LL_GPIO_ResetOutputPin(pin->rck_port, pin->rck_pin);
hc595_delay(10);
LL_GPIO_SetOutputPin(pin->rck_port, pin->rck_pin);//发送缓存区内容
}
uint8_t iostate[8] = {0};
void io_output(void)
{
//电磁阀1置0
if((CoilState[0] & 0x80))
{
LL_GPIO_ResetOutputPin(DO1_GPIO_Port,DO1_Pin);
iostate[7] = 0;
}
else
{
LL_GPIO_SetOutputPin(DO1_GPIO_Port,DO1_Pin);
iostate[7] = 1;
}
//电磁阀2置0
if((CoilState[0] & 0x40))
{
LL_GPIO_ResetOutputPin(DO2_GPIO_Port,DO2_Pin);
iostate[6] = 0;
}
else
{
LL_GPIO_SetOutputPin(DO2_GPIO_Port,DO2_Pin);
iostate[6] = 1;
}
//电磁阀3置0
if((CoilState[0] & 0x20))
{
LL_GPIO_ResetOutputPin(DO3_GPIO_Port,DO3_Pin);
iostate[5] = 0;
}
else
{
LL_GPIO_SetOutputPin(DO3_GPIO_Port,DO3_Pin);
iostate[5] = 1;
}
//电磁阀4置0
if((CoilState[0] & 0x10))
{
LL_GPIO_ResetOutputPin(DO4_GPIO_Port,DO4_Pin);
iostate[4] = 0;
}
else
{
LL_GPIO_SetOutputPin(DO4_GPIO_Port,DO4_Pin);
iostate[4] = 1;
}
//电磁阀5置0
if((CoilState[0] & 0x08))
{
LL_GPIO_ResetOutputPin(DO5_GPIO_Port,DO5_Pin);
iostate[3] = 0;
}
else
{
LL_GPIO_SetOutputPin(DO5_GPIO_Port,DO5_Pin);
iostate[3] = 1;
}
//指示灯1绿置0
if((CoilState[0] & 0x04))
{
LL_GPIO_ResetOutputPin(DO6_GPIO_Port,DO6_Pin);
iostate[2] = 0;
}
else
{
LL_GPIO_SetOutputPin(DO6_GPIO_Port,DO6_Pin);
iostate[2] = 1;
}
//指示灯2置0
if((CoilState[0] & 0x02))
{
LL_GPIO_ResetOutputPin(DO7_GPIO_Port,DO7_Pin);
iostate[1] = 0;
}
else
{
LL_GPIO_SetOutputPin(DO7_GPIO_Port,DO7_Pin);
iostate[1] = 1;
}
//指示灯3声光置0
if((CoilState[0] & 0x01))
{
LL_GPIO_ResetOutputPin(DO8_GPIO_Port,DO8_Pin);
iostate[0] = 0;
}
else
{
LL_GPIO_SetOutputPin(DO8_GPIO_Port,DO8_Pin);
iostate[0] = 1;
}
//激光调零
if(CoilState[1] & 0x02)
{
laser_handle.state = LASER_OPEN_STATUS;
CoilState[1] &= 0xFD;
}
}

393
Board/Src/laser.c Normal file
View File

@ -0,0 +1,393 @@
/*
* @Author: shenghao.xu
* @Date: 2023-04-13 22:39:28
* @LastEditors: shenghao.xu
* @LastEditTime: 2023-04-24 12:34:05
* @Description: HL-G103-S-J
* email:545403892@qq.com
* Copyright (c) 2023 by shenghao.xu, All Rights Reserved.
*/
#include <stdio.h>
#include "laser.h"
extern size_t strlen(const char *);
//extern uart_t *uarts[UART_NUM_MAX];
const char FRAME_HEAD_RSP = '$';
const char FRAME_TAIL = '\r';
const char FRAME_HEAD[] = "%01#";
const char FRAME_TRUE[] = "+00001";
const char FRAME_FALSE[] = "+00000";
const char FRAME_BCC[] = "**";
const char REQ_DEVICE_ONLINE[] = "WCSR03001";
const char REQ_OPEN_STATUS[] = "RLR"; // 激光开启状态查询
const char REQ_OPEN_STATUS_WRITE[] = "WLR"; // 激光开启状态设置
const char REQ_DISTANCE_READ[] = "RMD"; // 测定值读出
const char REQ_ZERO_STATUS[] = "RZS"; // 调零状态查询
const char REQ_ZERO_STATUS_WRITE[] = "WZS"; // 调零状态设置
//static uart_t *handle;
static char request_buf[RS485_REC_LEN];
static uint8_t uart_buf[RS485_REC_LEN];
static uint8_t *response_ptr;
static uint8_t response_ptr_offset = 0;
laser_t laser_handle;
uint8_t res;
int rx_count = 0;
//static void laser_rx_cb(uint8_t uart_index, uint8_t *data, uint16_t len);
static void laser_send(uint8_t *data, uint8_t length)
{
laser_handle.send_data_cb(USART2, data, length);
}
// 是否在线
static void command_device_connect_req(void)
{
snprintf(request_buf, sizeof(request_buf), "%s%s%s%c", FRAME_HEAD, REQ_DEVICE_ONLINE, FRAME_BCC, FRAME_TAIL);
laser_send((uint8_t *)request_buf, strlen(request_buf));
}
// 激光开启状态查询
static void command_open_status_req(void)
{
snprintf(request_buf, sizeof(request_buf), "%s%s%s%c", FRAME_HEAD, REQ_OPEN_STATUS, FRAME_BCC, FRAME_TAIL);
laser_send((uint8_t *)request_buf, strlen(request_buf));
}
// 激光开启状态设置
static void command_open_status_write_req(bool open)
{
if (open)
{
snprintf(request_buf, sizeof(request_buf), "%s%s%s%s%c", FRAME_HEAD, REQ_OPEN_STATUS_WRITE, FRAME_TRUE, FRAME_BCC, FRAME_TAIL);
}
else
{
snprintf(request_buf, sizeof(request_buf), "%s%s%s%s%c", FRAME_HEAD, REQ_OPEN_STATUS_WRITE, FRAME_FALSE, FRAME_BCC, FRAME_TAIL);
}
laser_send((uint8_t *)request_buf, strlen(request_buf));
}
// 测定值读出
static void command_distance_read_req(void)
{
snprintf(request_buf, sizeof(request_buf), "%s%s%s%c", FRAME_HEAD, REQ_DISTANCE_READ, FRAME_BCC, FRAME_TAIL);
laser_send((uint8_t *)request_buf, strlen(request_buf));
}
// 调零状态查询
static void command_zero_status_req(void)
{
snprintf(request_buf, sizeof(request_buf), "%s%s%s%c", FRAME_HEAD, REQ_ZERO_STATUS, FRAME_BCC, FRAME_TAIL);
laser_send((uint8_t *)request_buf, strlen(request_buf));
}
// 调零状态开启
static void command_zero_status_write_req(bool open)
{
if (open)
{
snprintf(request_buf, sizeof(request_buf), "%s%s%s%s%c", FRAME_HEAD, REQ_ZERO_STATUS_WRITE, FRAME_TRUE, FRAME_BCC, FRAME_TAIL);
}
else
{
snprintf(request_buf, sizeof(request_buf), "%s%s%s%s%c", FRAME_HEAD, REQ_ZERO_STATUS_WRITE, FRAME_FALSE, FRAME_BCC, FRAME_TAIL);
}
laser_send((uint8_t *)request_buf, strlen(request_buf));
}
static void command_zero_status_close_req(void)
{
command_zero_status_write_req(false);
}
static void command_zero_status_open_req(void)
{
command_zero_status_write_req(true);
}
// 处理数据
static void laser_data_process(uint8_t *data, uint8_t length)
{
char cmd[3] = {0};
// 向右偏移4个位置获取指令部分
response_ptr_offset = 0;
response_ptr = data;
response_ptr_offset += 4;
if (!laser_handle.connect)
{
osel_memcpy((uint8_t *)cmd, response_ptr + response_ptr_offset, 2);
response_ptr_offset += 2;
}
else
{
osel_memcpy((uint8_t *)cmd, response_ptr + response_ptr_offset, 3);
response_ptr_offset += 3;
}
cmd_parsing(cmd);
}
static void command_device_connect_rsp(void)
{
laser_handle.connect = true;
if (laser_handle.state != LASER_READY)
{
laser_handle.state = LASER_CONNECT;
}
}
static void command_open_status_rsp(void)
{
uint8_t status[5] = {0};
response_ptr_offset++; // 跳过符号
osel_memcpy(status, response_ptr + response_ptr_offset, 5);
const char *cs = FRAME_TRUE;
const char *o_status = (char *)status;
if(!strncmp(o_status, (cs + 1), 5))
{
laser_handle.open_status = true;
if (laser_handle.state != LASER_READY)
{
laser_handle.state = LASER_OPEN_STATUS;
}
}
else
{
laser_handle.open_status = false;
}
#if STATUS_DEFAULT == 1
if (laser_handle.state == LASER_CONNECT)
{
if (!laser_handle.open_status)
{
command_open_status_write_req(true);
}
}
#endif
}
static void command_open_status_write_rsp(void)
{
}
#define PRECISION 100000 // 精度,即小数点后的位数
static float to_float(uint8_t *arr)
{
int num = arr[0] * 1000000 + arr[1] * 100000 + arr[2] * 10000 + arr[3] * 1000 + arr[4] * 100 + arr[5] * 10 + arr[6]; // 数字部分的值
float result = (float)num / PRECISION; // 将数字部分和小数部分合并成浮点数
return result;
}
static void command_distance_read_rsp(void)
{
uint8_t distance[10] = {0};
float f = 0;
osel_memcpy(distance, response_ptr + response_ptr_offset, 10);
for (uint8_t i = 1; i <= 7; i++)
{
CHAR_TO_NUM(distance[i], distance[i]);
}
f = to_float(&distance[1]);
if (distance[0] == '-')
{
f = -f;
}
if (laser_handle.state != LASER_READY)
{
laser_handle.state = LASER_DISTANCE;
}
laser_handle.distance = f * 1000;
}
static void command_zero_status_rsp(void)
{
uint8_t status[5] = {0};
response_ptr_offset++; // 跳过符号
osel_memcpy(status, response_ptr + response_ptr_offset, 5);
const char *cs = FRAME_TRUE;
const char *z_status = (char *)status;
if(!strncmp(z_status, (cs + 1), 5))
{
laser_handle.zero_status = true;
}
else
{
laser_handle.zero_status = false;
}
}
static void command_zero_status_write_rsp(void)
{
#if STATUS_DEFAULT == 1
if (laser_handle.state == LASER_OPEN_STATUS)
{
laser_handle.zero_status = false;
laser_handle.state = LASER_ZERO_STATUS_CLOSE;
}
else if (laser_handle.state == LASER_ZERO_STATUS_CLOSE)
{
laser_handle.zero_status = true;
laser_handle.state = LASER_ZERO_STATUS_OPEN;
}
else
{
laser_handle.zero_status = false;
laser_handle.state = LASER_CONNECT;
}
#endif
}
static void _laser_ready(void)
{
laser_handle.state = LASER_READY;
}
//REGISTER_CMD(WC, command_device_connect_rsp, "");
//REGISTER_CMD(RLR, command_open_status_rsp, "");
//REGISTER_CMD(WLR, command_open_status_write_rsp, "");
//REGISTER_CMD(RMD, command_distance_read_rsp, "");
//REGISTER_CMD(RZS, command_zero_status_rsp, "");
//REGISTER_CMD(WZS, command_zero_status_write_rsp, "");
laser_event_t laser_event[] = {
{LASER_IDEL, command_device_connect_req},
{LASER_CONNECT, command_open_status_req},
{LASER_OPEN_STATUS, command_zero_status_close_req},
{LASER_ZERO_STATUS_CLOSE, command_zero_status_open_req},
{LASER_ZERO_STATUS_OPEN, command_distance_read_req},
{LASER_DISTANCE, _laser_ready},
};
void uart2_init(void)
{
/*接收配置*/
//使能空闲中断
LL_USART_EnableIT_IDLE(USART2);
/*发送配置*/
//设置外设地址因为这个是DMA串口发送
LL_DMA_SetPeriphAddress(DMA1,LL_DMA_STREAM_6,(uint32_t)&USART2->DR);
//使能DMA串口发送
LL_USART_EnableDMAReq_TX(USART2);
//使能DMA2发送完成中断
LL_DMA_EnableIT_TC(DMA1,LL_DMA_STREAM_6);
LL_USART_EnableIT_RXNE(USART2); //开启接收中断
}
void laser_init(send_data_cb_t cb)
{
laser_handle.state = LASER_IDEL;
laser_handle.send_data_cb = cb;
laser_handle.command_device_connect_req = command_device_connect_req;
laser_handle.command_open_status_req = command_open_status_req;
laser_handle.command_open_status_write_req = command_open_status_write_req;
laser_handle.command_distance_read_req = command_distance_read_req;
laser_handle.command_zero_status_req = command_zero_status_req;
laser_handle.command_zero_status_write_req = command_zero_status_write_req;
}
//串口接收中断回调函数,激光
void laser_rx_cb(void)//uint8_t uart_index, uint8_t *data, uint16_t len
{
// 空闲中断表明接收到了1帧所有的数据
if(LL_USART_IsActiveFlag_IDLE(USART2))
{
//清除空闲中断
LL_USART_ClearFlag_IDLE(USART2);
laser_data_process(uart_buf,rx_count);
rx_count = 0;
}
// Rx非空中断表明接收到了一个字节
// 读取Rx可自动清除中断标志位
if(LL_USART_IsActiveFlag_RXNE(USART2))
{
// 如果数组长度大于设置的data最大长度直接停止接收
if(rx_count > 50)
rx_count = 0; // wait for the next data
uart_buf[rx_count] = LL_USART_ReceiveData8(USART2);
rx_count ++;
}
}
//根据cmd指令执行相应程序
void cmd_parsing(char *str)
{
//if(strcmp(str, "WC") == 0)
if(!strncmp(str, REQ_DEVICE_ONLINE,2))
command_device_connect_rsp();
else if(!strncmp(str, REQ_OPEN_STATUS,3))
command_open_status_rsp();
else if(!strncmp(str, REQ_OPEN_STATUS_WRITE,3))
command_open_status_write_rsp();
else if(!strncmp(str, REQ_DISTANCE_READ,3))
command_distance_read_rsp();
else if(!strncmp(str, REQ_ZERO_STATUS,3))
command_zero_status_rsp();
else if(!strncmp(str, REQ_ZERO_STATUS_WRITE,3))
command_zero_status_write_rsp();
}
//激光传感器任务流程
void laser_task(void)
{
//command_zero_status_open_req();
if (laser_handle.state != LASER_READY)
{
if(it_500ms_falg == 1)
{
if(laser_handle.state == LASER_IDEL)
command_device_connect_req();
else if(laser_handle.state == LASER_CONNECT)
command_open_status_req();
else if(laser_handle.state == LASER_OPEN_STATUS)
command_zero_status_close_req();
else if(laser_handle.state == LASER_ZERO_STATUS_CLOSE)
command_zero_status_open_req();
else if(laser_handle.state == LASER_ZERO_STATUS_OPEN)
command_distance_read_req();
else if(laser_handle.state == LASER_DISTANCE)
_laser_ready();
it_500ms_falg = 0;
}
}
else
{
if(it_10ms_falg == 1)
{
laser_handle.command_distance_read_req();
if(laser_handle.distance >= 0)
{
InputReg[4] = laser_handle.distance;
}
else
{
int laser_num = -laser_handle.distance;
InputReg[4] = (uint16_t)((0xFFFF - laser_num) + 1);
}
it_10ms_falg = 0;
//laser_handle.connect = true;
}
}
}

74
Board/Src/mf.c Normal file
View File

@ -0,0 +1,74 @@
#include "mf.h"
/*
*:[][03][][][][][CRC低][CRC高]
*:[][03][][0][0][1][1][n高][n低][CRC低][CRC高]
*/
void read_mf(uint8_t local_addr, uint16_t start_addr, uint16_t read_len)
{
uint8_t tx_buf[20] = {0},tx_len = 0;
uint16_t CRC_Num = 0;
tx_buf[tx_len ++] = local_addr;
tx_buf[tx_len ++] = Read_Hold;
tx_buf[tx_len ++] = (uint8_t)(start_addr >> 8);
tx_buf[tx_len ++] = (uint8_t)(start_addr & 0xFF);
tx_buf[tx_len ++] = (uint8_t)(read_len >> 8);
tx_buf[tx_len ++] = (uint8_t)(read_len & 0xFF);
CRC_Num = ModbusCRC16(tx_buf,tx_len);
tx_buf[tx_len ++] = (uint8_t)(CRC_Num & 0xFF);
tx_buf[tx_len ++] = (uint8_t)(CRC_Num >> 8);
usart6_send(tx_buf,tx_len);
}
/*
*:[][06][][][][][CRC低][CRC高]
*:[][06][][][][][CRC低][CRC高]
*/
void write_mf(uint8_t local_addr, uint16_t reg_addr, uint16_t write_data)
{
uint8_t tx_buf[20] = {0},tx_len = 0;
uint16_t CRC_Num = 0;
tx_buf[tx_len ++] = local_addr;
tx_buf[tx_len ++] = Write_Single;
tx_buf[tx_len ++] = (uint8_t)(reg_addr >> 8);
tx_buf[tx_len ++] = (uint8_t)(reg_addr & 0xFF);
tx_buf[tx_len ++] = (uint8_t)(write_data >> 8);
tx_buf[tx_len ++] = (uint8_t)(write_data & 0xFF);
CRC_Num = ModbusCRC16(tx_buf,tx_len);
tx_buf[tx_len ++] = (uint8_t)(CRC_Num & 0xFF);
tx_buf[tx_len ++] = (uint8_t)(CRC_Num >> 8);
usart6_send(tx_buf,tx_len);
}
//读mf4700瞬时流量
void read_mf4700_flow(void)
{
read_mf(MF4700_ADDR,MF4700_Ins_Flow_Addr,2);
}
//读mf5600瞬时流量
void read_mf5000_flow(void)
{
read_mf(MF5000_ADDR,MF5000_Ins_Flow_Addr,2);
}
//mf4700自动校零
void mf4700_zero(void)
{
write_mf(MF4700_ADDR,MF4700_Auto_Zero_Addr,General_Data);
}
//mf5600自动校零
void mf5000_zero(void)
{
write_mf(MF5000_ADDR,MF5000_Auto_Zero_Addr,General_Data);
}

1
Board/Src/mf4700.c Normal file
View File

@ -0,0 +1 @@

0
Board/Src/mf5600.c Normal file
View File

321
Board/Src/ms5803.c Normal file
View File

@ -0,0 +1,321 @@
#include "MS5803.h"
PromVar PROMData;
volatile int32_t CurrentTemp = 0,CurrentPress = 0;
/* SPI handler declaration */
/* Buffer used for transmission */
uint8_t aTxBuffer[4];
uint8_t aRxBuffer[4];
uint8_t NSS_Select = 1;
//拉高所有片选脚
void SetCS(void)
{
LL_GPIO_SetOutputPin(SPI1_NSS1_GPIO_Port,SPI1_NSS1_Pin);
LL_GPIO_SetOutputPin(SPI1_NSS2_GPIO_Port,SPI1_NSS2_Pin);
LL_GPIO_SetOutputPin(SPI1_NSS3_GPIO_Port,SPI1_NSS3_Pin);
LL_GPIO_ResetOutputPin(SPI1_NSS4_GPIO_Port,SPI1_NSS4_Pin);
LL_GPIO_SetOutputPin(SPI1_NSS5_GPIO_Port,SPI1_NSS5_Pin);
LL_GPIO_SetOutputPin(SPI1_NSS6_GPIO_Port,SPI1_NSS6_Pin);
LL_GPIO_SetOutputPin(SPI1_NSS7_GPIO_Port,SPI1_NSS7_Pin);
LL_GPIO_ResetOutputPin(SPI1_NSS8_GPIO_Port,SPI1_NSS8_Pin);
}
void ClrCS(void)
{
switch(NSS_Select)
{
case 1 :
LL_GPIO_ResetOutputPin(SPI1_NSS1_GPIO_Port,SPI1_NSS1_Pin);
break;
case 2 :
LL_GPIO_ResetOutputPin(SPI1_NSS2_GPIO_Port,SPI1_NSS2_Pin);
break;
case 3 :
LL_GPIO_ResetOutputPin(SPI1_NSS3_GPIO_Port,SPI1_NSS3_Pin);
break;
case 4 :
LL_GPIO_SetOutputPin(SPI1_NSS4_GPIO_Port,SPI1_NSS4_Pin);
break;
case 5 :
LL_GPIO_ResetOutputPin(SPI1_NSS5_GPIO_Port,SPI1_NSS5_Pin);
break;
case 6 :
LL_GPIO_ResetOutputPin(SPI1_NSS6_GPIO_Port,SPI1_NSS6_Pin);
break;
case 7 :
LL_GPIO_ResetOutputPin(SPI1_NSS7_GPIO_Port,SPI1_NSS7_Pin);
break;
case 8 :
LL_GPIO_SetOutputPin(SPI1_NSS8_GPIO_Port,SPI1_NSS8_Pin);
break;
}
}
//****************************************
//*功能向MS5803写入命令
//*参数CMD
//*返回True/False
static int WriteCmd(uint8_t CMD)
{
memset(aTxBuffer,0,sizeof(aTxBuffer));
aTxBuffer[0] = CMD;
ClrCS();
LL_mDelay(1); // pull CSB low to start the command
if(HAL_SPI_Transmit(&hspi1,(uint8_t*)aTxBuffer,1,10))
{
LL_mDelay(10);
SetCS();
LL_mDelay(1);
return 1;
}
else
{
LL_mDelay(10);
SetCS();
LL_mDelay(1);
return 0;
}
// if(HAL_SPI_TransmitReceive(&hspi1, (uint8_t*)aTxBuffer, (uint8_t *)aRxBuffer, 1, 100))
// {
// LL_mDelay(10);
// SetCS();
// LL_mDelay(1);
// return 1;
// }
// else
// {
// LL_mDelay(10);
// SetCS();
// LL_mDelay(1);
// return 0;
// }
//return 1;
}
//****************************************
//*功能根据指令从MS5803读相应数据
//*参数CMD,Count
//*返回True/False
static int ReadCmdData(uint8_t CMD,uint8_t Count)
{
memset(aTxBuffer,0,sizeof(aTxBuffer));
aTxBuffer[0] = CMD;
ClrCS();
LL_mDelay(1);
// if(HAL_SPI_Transmit(&hspi1,(uint8_t*)aTxBuffer,1,10)&&HAL_SPI_Receive(&hspi1,(uint8_t *)aRxBuffer,Count+1,100))
// {
// SetCS(); // pull CSB high to finish the command
// LL_mDelay(1);
// return 1;
// }
// else
// {
// SetCS(); // pull CSB high to finish the command
// LL_mDelay(1);
// return 0;
// }
if(HAL_SPI_TransmitReceive(&hspi1, (uint8_t*)aTxBuffer, (uint8_t *)aRxBuffer, Count+1, 100))
{
SetCS();
LL_mDelay(1);
return 1;
}
else
{
SetCS();
LL_mDelay(1);
return 0;
}
//memmove(aRxBuffer,aRxBuffer+1,Count);//
//return 1;
}
//****************************************
//*功能复位MS5803
//*参数:
//*返回:
static void ResetDevice()
{
WriteCmd(RESET);
LL_mDelay(3); //必须延时3ms
}
//****************************************
//*功能获取PROM校准参数,只需要获取一次
//*参数:
//*返回:
static void GetPromData()
{
memset(aRxBuffer,0,sizeof(aRxBuffer));
ReadCmdData(Cof1,2);
PROMData.C1[NSS_Select] = (aRxBuffer[1]<<8) + aRxBuffer[2];
memset(aRxBuffer,0,sizeof(aRxBuffer));
ReadCmdData(Cof2,2);
PROMData.C2[NSS_Select] = (aRxBuffer[1]<<8) + aRxBuffer[2];
memset(aRxBuffer,0,sizeof(aRxBuffer));
ReadCmdData(Cof3,2);
PROMData.C3[NSS_Select] = (aRxBuffer[1]<<8) + aRxBuffer[2];
memset(aRxBuffer,0,sizeof(aRxBuffer));
ReadCmdData(Cof4,2);
PROMData.C4[NSS_Select] = (aRxBuffer[1]<<8) + aRxBuffer[2];
memset(aRxBuffer,0,sizeof(aRxBuffer));
ReadCmdData(Cof5,2);
PROMData.C5[NSS_Select] = (aRxBuffer[1]<<8) + aRxBuffer[2];
memset(aRxBuffer,0,sizeof(aRxBuffer));
ReadCmdData(Cof6,2);
PROMData.C6[NSS_Select] = (aRxBuffer[1]<<8) + aRxBuffer[2];
}
//****************************************
//*功能MS5803初始化
//*参数:
//*返回:
void MS5803Init()
{
// LL_SPI_Enable(SPI1);
//SPI_Init();
LL_GPIO_ResetOutputPin(SENSOR_SELECT_GPIO_Port,SENSOR_SELECT_Pin);
SetCS();
NSS_Select = 1;
//初始化代码
ResetDevice();
GetPromData();
NSS_Select = 2;
//初始化代码
ResetDevice();
GetPromData();
NSS_Select = 3;
//初始化代码
ResetDevice();
GetPromData();
//
// NSS_Select = 4;
// //初始化代码
// ResetDevice();
// GetPromData();
}
//****************************************
//*功能:获取温度和压力 MS5803-14BA
//*参数:
//*返回:
void StartCalculation()
{
uint32_t D1,D2;
int32_t dT,TEMP;
int64_t OFF,SENS;
//转换压力
WriteCmd(CD1_4096);
LL_mDelay(10); //必须延时10ms
ReadCmdData(ADC_Read,3);
D1 = (aRxBuffer[1]*pow(2,16)) + (aRxBuffer[2]*pow(2,8)) + aRxBuffer[3];
//转换温度
WriteCmd(CD2_4096);
LL_mDelay(10); //必须延时10ms
ReadCmdData(ADC_Read,3);
D2 = (aRxBuffer[1]*pow(2,16)) + (aRxBuffer[2]*pow(2,8)) + aRxBuffer[3];
//计算温度
dT = D2 - (PROMData.C5[NSS_Select]*pow(2,8));
if(dT > 16777216)
{
dT = 16777216;
}
else if(dT < -16776960)
{
dT = -16776960;
}
TEMP = 2000 + ((((long long)dT)*PROMData.C6[NSS_Select])/pow(2,23));
//计算压力
OFF = (PROMData.C2[NSS_Select]*pow(2,16)) + ((((long long)dT)*PROMData.C4[NSS_Select])/pow(2,7));
if(OFF > 51538821120)
{
OFF = 51538821120;
}
else if(OFF < -34358689800)
{
OFF = -34358689800;
}
SENS = (((long long)PROMData.C1[NSS_Select])*pow(2,15)) + ((((long long)dT)*PROMData.C3[NSS_Select])/pow(2,8));
if(SENS > 17179607040)
{
SENS = 17179607040;
}
else if(SENS < -8589672450)
{
SENS = -8589672450;
}
__nop();
//Second order compensation
long T2 = 0,OFF2 = 0,SENS2 = 0;
if(TEMP < 2000)
{
T2 = (3*pow(dT,2))/pow(2,33);
OFF2 = (3*pow((TEMP-2000),2))/pow(2,1);
SENS2 = (5*pow((TEMP-2000),2))/pow(2,3);
if(TEMP < -1500)
{
OFF2 += 7 * pow(TEMP+1500,2);
SENS2 += 4 * pow((TEMP+1500),2);
}
}
else
{
T2 = (7*pow(dT,2))/pow(2,37);
OFF2 = pow((TEMP-2000),2)/pow(2,4);
}
CurrentTemp = TEMP - T2;
OFF -= OFF2;
SENS -= SENS2;
CurrentPress = (((((long long)SENS)*D1)/pow(2,21)) - OFF)/pow(2,15);
__nop();
}
void ms5803_task(void)
{
if(NSS_Select > 3)
NSS_Select = 1;
StartCalculation();
InputReg[NSS_Select + 6] = CurrentPress/10;//压力数据存入
NSS_Select++;
}

52
Core/Inc/adc.h Normal file
View File

@ -0,0 +1,52 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file adc.h
* @brief This file contains all the function prototypes for
* the adc.c file
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __ADC_H__
#define __ADC_H__
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* USER CODE BEGIN Private defines */
extern uint16_t ADC_ConvertedValue[3];
extern uint8_t ADC_TC_Flag;
/* USER CODE END Private defines */
void MX_ADC1_Init(void);
/* USER CODE BEGIN Prototypes */
void adc1_start_dma(void);
void get_adc_value(void);
/* USER CODE END Prototypes */
#ifdef __cplusplus
}
#endif
#endif /* __ADC_H__ */

52
Core/Inc/dma.h Normal file
View File

@ -0,0 +1,52 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file dma.h
* @brief This file contains all the function prototypes for
* the dma.c file
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __DMA_H__
#define __DMA_H__
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* DMA memory to memory transfer handles -------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* USER CODE BEGIN Private defines */
/* USER CODE END Private defines */
void MX_DMA_Init(void);
/* USER CODE BEGIN Prototypes */
/* USER CODE END Prototypes */
#ifdef __cplusplus
}
#endif
#endif /* __DMA_H__ */

49
Core/Inc/gpio.h Normal file
View File

@ -0,0 +1,49 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file gpio.h
* @brief This file contains all the function prototypes for
* the gpio.c file
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __GPIO_H__
#define __GPIO_H__
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* USER CODE BEGIN Private defines */
/* USER CODE END Private defines */
void MX_GPIO_Init(void);
/* USER CODE BEGIN Prototypes */
/* USER CODE END Prototypes */
#ifdef __cplusplus
}
#endif
#endif /*__ GPIO_H__ */

276
Core/Inc/main.h Normal file
View File

@ -0,0 +1,276 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.h
* @brief : Header for main.c file.
* This file contains the common defines of the application.
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __MAIN_H
#define __MAIN_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
#include "stm32f4xx_ll_adc.h"
#include "stm32f4xx_ll_dma.h"
#include "stm32f4xx_ll_rcc.h"
#include "stm32f4xx_ll_bus.h"
#include "stm32f4xx_ll_system.h"
#include "stm32f4xx_ll_exti.h"
#include "stm32f4xx_ll_cortex.h"
#include "stm32f4xx_ll_utils.h"
#include "stm32f4xx_ll_pwr.h"
#include "stm32f4xx_ll_spi.h"
#include "stm32f4xx_ll_tim.h"
#include "stm32f4xx_ll_usart.h"
#include "stm32f4xx_ll_gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stm32f4xx_it.h"
#include <stdbool.h>
#include "adc.h"
#include "spi.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
#include "Modbus.h"
#include "ads1256.h"
#include "hc165.h"
#include "hc595.h"
#include "dac7311.h"
#include "ms5803.h"
#include "laser.h"
#include "mf.h"
/* USER CODE END Includes */
/* Exported types ------------------------------------------------------------*/
/* USER CODE BEGIN ET */
/* USER CODE END ET */
/* Exported constants --------------------------------------------------------*/
/* USER CODE BEGIN EC */
/* USER CODE END EC */
/* Exported macro ------------------------------------------------------------*/
/* USER CODE BEGIN EM */
/* USER CODE END EM */
/* Exported functions prototypes ---------------------------------------------*/
void Error_Handler(void);
/* USER CODE BEGIN EFP */
void delay_us(uint32_t nus);
void delay_ms(uint16_t nms);
void delay_tick(uint32_t ticks);
/* USER CODE END EFP */
/* Private defines -----------------------------------------------------------*/
#define SPI1_NSS4_Pin LL_GPIO_PIN_2
#define SPI1_NSS4_GPIO_Port GPIOE
#define SPI1_NSS3_Pin LL_GPIO_PIN_3
#define SPI1_NSS3_GPIO_Port GPIOE
#define SPI1_NSS2_Pin LL_GPIO_PIN_4
#define SPI1_NSS2_GPIO_Port GPIOE
#define SPI1_NSS1_Pin LL_GPIO_PIN_5
#define SPI1_NSS1_GPIO_Port GPIOE
#define SENSOR_SELECT_Pin LL_GPIO_PIN_6
#define SENSOR_SELECT_GPIO_Port GPIOE
#define PC13_SPI8_Pin LL_GPIO_PIN_13
#define PC13_SPI8_GPIO_Port GPIOC
#define PC14_SPI8_Pin LL_GPIO_PIN_14
#define PC14_SPI8_GPIO_Port GPIOC
#define PC15_SPI8_Pin LL_GPIO_PIN_15
#define PC15_SPI8_GPIO_Port GPIOC
#define HC165_DAT_Pin LL_GPIO_PIN_0
#define HC165_DAT_GPIO_Port GPIOC
#define HC165_INH_Pin LL_GPIO_PIN_1
#define HC165_INH_GPIO_Port GPIOC
#define HC165_LD_Pin LL_GPIO_PIN_2
#define HC165_LD_GPIO_Port GPIOC
#define HC165_CLK_Pin LL_GPIO_PIN_3
#define HC165_CLK_GPIO_Port GPIOC
#define ADC_IN0_AO1_Pin LL_GPIO_PIN_0
#define ADC_IN0_AO1_GPIO_Port GPIOA
#define ADC_IN1_A02_Pin LL_GPIO_PIN_1
#define ADC_IN1_A02_GPIO_Port GPIOA
#define ADC_IN2_RT_Pin LL_GPIO_PIN_2
#define ADC_IN2_RT_GPIO_Port GPIOA
#define PA3_SPI8_Pin LL_GPIO_PIN_3
#define PA3_SPI8_GPIO_Port GPIOA
#define PA4_SPI8_Pin LL_GPIO_PIN_4
#define PA4_SPI8_GPIO_Port GPIOA
#define HC595_SER_Pin LL_GPIO_PIN_4
#define HC595_SER_GPIO_Port GPIOC
#define HC595_OE_Pin LL_GPIO_PIN_5
#define HC595_OE_GPIO_Port GPIOC
#define HC595_RCLK_Pin LL_GPIO_PIN_0
#define HC595_RCLK_GPIO_Port GPIOB
#define HC595_SRCLK_Pin LL_GPIO_PIN_1
#define HC595_SRCLK_GPIO_Port GPIOB
#define HC595_SRCLR_Pin LL_GPIO_PIN_2
#define HC595_SRCLR_GPIO_Port GPIOB
#define DO1_Pin LL_GPIO_PIN_7
#define DO1_GPIO_Port GPIOE
#define DO2_Pin LL_GPIO_PIN_8
#define DO2_GPIO_Port GPIOE
#define DO3_Pin LL_GPIO_PIN_9
#define DO3_GPIO_Port GPIOE
#define DO4_Pin LL_GPIO_PIN_10
#define DO4_GPIO_Port GPIOE
#define DO5_Pin LL_GPIO_PIN_11
#define DO5_GPIO_Port GPIOE
#define DO6_Pin LL_GPIO_PIN_12
#define DO6_GPIO_Port GPIOE
#define DO7_Pin LL_GPIO_PIN_13
#define DO7_GPIO_Port GPIOE
#define DO8_Pin LL_GPIO_PIN_14
#define DO8_GPIO_Port GPIOE
#define PE15_SPI7_Pin LL_GPIO_PIN_15
#define PE15_SPI7_GPIO_Port GPIOE
#define PB10_SPI7_Pin LL_GPIO_PIN_10
#define PB10_SPI7_GPIO_Port GPIOB
#define PB11_SPI7_Pin LL_GPIO_PIN_11
#define PB11_SPI7_GPIO_Port GPIOB
#define AO1_SPI5_MOSI_Pin LL_GPIO_PIN_11
#define AO1_SPI5_MOSI_GPIO_Port GPIOD
#define AO1_SPI5_SCK_Pin LL_GPIO_PIN_12
#define AO1_SPI5_SCK_GPIO_Port GPIOD
#define AO1_SPI5_NSS_Pin LL_GPIO_PIN_13
#define AO1_SPI5_NSS_GPIO_Port GPIOD
#define PD14_SPI7_Pin LL_GPIO_PIN_14
#define PD14_SPI7_GPIO_Port GPIOD
#define PD15_SPI7_Pin LL_GPIO_PIN_15
#define PD15_SPI7_GPIO_Port GPIOD
#define AO2_SPI6_MOSI_Pin LL_GPIO_PIN_8
#define AO2_SPI6_MOSI_GPIO_Port GPIOC
#define AO2_SPI6_SCK_Pin LL_GPIO_PIN_9
#define AO2_SPI6_SCK_GPIO_Port GPIOC
#define AO2_SPI6_NSS_Pin LL_GPIO_PIN_8
#define AO2_SPI6_NSS_GPIO_Port GPIOA
#define SWDIO_Pin LL_GPIO_PIN_13
#define SWDIO_GPIO_Port GPIOA
#define SWCLK_Pin LL_GPIO_PIN_14
#define SWCLK_GPIO_Port GPIOA
#define ADS1256_DRDY_Pin LL_GPIO_PIN_0
#define ADS1256_DRDY_GPIO_Port GPIOD
#define ADS1256_PDWN_Pin LL_GPIO_PIN_1
#define ADS1256_PDWN_GPIO_Port GPIOD
#define CH395Q_RST_Pin LL_GPIO_PIN_2
#define CH395Q_RST_GPIO_Port GPIOD
#define CH395Q_INT_Pin LL_GPIO_PIN_3
#define CH395Q_INT_GPIO_Port GPIOD
#define CH395Q_RSTI_Pin LL_GPIO_PIN_4
#define CH395Q_RSTI_GPIO_Port GPIOD
#define SPI1_NSS8_Pin LL_GPIO_PIN_7
#define SPI1_NSS8_GPIO_Port GPIOD
#define SPI1_NSS7_Pin LL_GPIO_PIN_3
#define SPI1_NSS7_GPIO_Port GPIOB
#define SPI1_NSS6_Pin LL_GPIO_PIN_4
#define SPI1_NSS6_GPIO_Port GPIOB
#define SPI1_NSS5_Pin LL_GPIO_PIN_5
#define SPI1_NSS5_GPIO_Port GPIOB
#define ENCODER_A_Pin LL_GPIO_PIN_6
#define ENCODER_A_GPIO_Port GPIOB
#define ENCODER_B_Pin LL_GPIO_PIN_7
#define ENCODER_B_GPIO_Port GPIOB
/* USER CODE BEGIN Private defines */
extern int i;
#define osel_memset _memset
#define osel_memcmp _memcmp
#define osel_memcpy memcpyL
#define osel_memcpyr memcpyR
static inline void _memset(uint8_t *dst, uint8_t value, uint16_t size)
{
while (size--)
{
*dst++ = value;
}
}
static inline int8_t _memcmp(const uint8_t *dst, const uint8_t *src, uint16_t size)
{
while (size--)
{
if (*dst++ != *src++)
{
return -1;
}
}
return 0;
}
static inline void memcpyL(uint8_t *dst, const uint8_t *src, uint16_t size)
{
while (size--)
{
*dst++ = *src++;
}
}
static inline void memcpyR(uint8_t *dst, const uint8_t *src, uint16_t size)
{
dst = dst + (size - 1);
while (size--)
{
*dst-- = *src++;
}
}
// 比较2个数组是否相等
#define IsEqual(arr1, arr2, n) ({ \
int _equal = 1; \
for (int _i = 0; _i < n; _i++) \
{ \
if (arr1[_i] != arr2[_i]) \
{ \
_equal = 0; \
break; \
} \
} \
_equal; \
})
// ASSIC码转换为16进制
#define CHAR_TO_NUM(c, num) \
do \
{ \
if ((c) >= '0' && (c) <= '9') \
{ \
(num) = (c) - '0'; \
} \
else \
{ \
num = 0; \
} \
} while (0)
/* USER CODE END Private defines */
#ifdef __cplusplus
}
#endif
#endif /* __MAIN_H */

56
Core/Inc/spi.h Normal file
View File

@ -0,0 +1,56 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file spi.h
* @brief This file contains all the function prototypes for
* the spi.c file
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __SPI_H__
#define __SPI_H__
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
extern SPI_HandleTypeDef hspi1;
extern SPI_HandleTypeDef hspi3;
/* USER CODE BEGIN Private defines */
/* USER CODE END Private defines */
void MX_SPI1_Init(void);
void MX_SPI2_Init(void);
void MX_SPI3_Init(void);
/* USER CODE BEGIN Prototypes */
/* USER CODE END Prototypes */
#ifdef __cplusplus
}
#endif
#endif /* __SPI_H__ */

53
Core/Inc/stm32_assert.h Normal file
View File

@ -0,0 +1,53 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file stm32_assert.h
* @brief STM32 assert file.
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32_ASSERT_H
#define __STM32_ASSERT_H
#ifdef __cplusplus
extern "C" {
#endif
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/* Includes ------------------------------------------------------------------*/
/* Exported macro ------------------------------------------------------------*/
#ifdef USE_FULL_ASSERT
/**
* @brief The assert_param macro is used for function's parameters check.
* @param expr: If expr is false, it calls assert_failed function
* which reports the name of the source file and the source
* line number of the call that failed.
* If expr is true, it returns no value.
* @retval None
*/
#define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__))
/* Exported functions ------------------------------------------------------- */
void assert_failed(uint8_t* file, uint32_t line);
#else
#define assert_param(expr) ((void)0U)
#endif /* USE_FULL_ASSERT */
#ifdef __cplusplus
}
#endif
#endif /* __STM32_ASSERT_H */

View File

@ -0,0 +1,495 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file stm32f4xx_hal_conf_template.h
* @author MCD Application Team
* @brief HAL configuration template file.
* This file should be copied to the application folder and renamed
* to stm32f4xx_hal_conf.h.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F4xx_HAL_CONF_H
#define __STM32F4xx_HAL_CONF_H
#ifdef __cplusplus
extern "C" {
#endif
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/* ########################## Module Selection ############################## */
/**
* @brief This is the list of modules to be used in the HAL driver
*/
#define HAL_MODULE_ENABLED
/* #define HAL_CRYP_MODULE_ENABLED */
/* #define HAL_ADC_MODULE_ENABLED */
/* #define HAL_CAN_MODULE_ENABLED */
/* #define HAL_CRC_MODULE_ENABLED */
/* #define HAL_CAN_LEGACY_MODULE_ENABLED */
/* #define HAL_DAC_MODULE_ENABLED */
/* #define HAL_DCMI_MODULE_ENABLED */
/* #define HAL_DMA2D_MODULE_ENABLED */
/* #define HAL_ETH_MODULE_ENABLED */
/* #define HAL_ETH_LEGACY_MODULE_ENABLED */
/* #define HAL_NAND_MODULE_ENABLED */
/* #define HAL_NOR_MODULE_ENABLED */
/* #define HAL_PCCARD_MODULE_ENABLED */
/* #define HAL_SRAM_MODULE_ENABLED */
/* #define HAL_SDRAM_MODULE_ENABLED */
/* #define HAL_HASH_MODULE_ENABLED */
/* #define HAL_I2C_MODULE_ENABLED */
/* #define HAL_I2S_MODULE_ENABLED */
/* #define HAL_IWDG_MODULE_ENABLED */
/* #define HAL_LTDC_MODULE_ENABLED */
/* #define HAL_RNG_MODULE_ENABLED */
/* #define HAL_RTC_MODULE_ENABLED */
/* #define HAL_SAI_MODULE_ENABLED */
/* #define HAL_SD_MODULE_ENABLED */
/* #define HAL_MMC_MODULE_ENABLED */
#define HAL_SPI_MODULE_ENABLED
/* #define HAL_TIM_MODULE_ENABLED */
/* #define HAL_UART_MODULE_ENABLED */
/* #define HAL_USART_MODULE_ENABLED */
/* #define HAL_IRDA_MODULE_ENABLED */
/* #define HAL_SMARTCARD_MODULE_ENABLED */
/* #define HAL_SMBUS_MODULE_ENABLED */
/* #define HAL_WWDG_MODULE_ENABLED */
/* #define HAL_PCD_MODULE_ENABLED */
/* #define HAL_HCD_MODULE_ENABLED */
/* #define HAL_DSI_MODULE_ENABLED */
/* #define HAL_QSPI_MODULE_ENABLED */
/* #define HAL_QSPI_MODULE_ENABLED */
/* #define HAL_CEC_MODULE_ENABLED */
/* #define HAL_FMPI2C_MODULE_ENABLED */
/* #define HAL_FMPSMBUS_MODULE_ENABLED */
/* #define HAL_SPDIFRX_MODULE_ENABLED */
/* #define HAL_DFSDM_MODULE_ENABLED */
/* #define HAL_LPTIM_MODULE_ENABLED */
#define HAL_GPIO_MODULE_ENABLED
#define HAL_EXTI_MODULE_ENABLED
#define HAL_DMA_MODULE_ENABLED
#define HAL_RCC_MODULE_ENABLED
#define HAL_FLASH_MODULE_ENABLED
#define HAL_PWR_MODULE_ENABLED
#define HAL_CORTEX_MODULE_ENABLED
/* ########################## HSE/HSI Values adaptation ##################### */
/**
* @brief Adjust the value of External High Speed oscillator (HSE) used in your application.
* This value is used by the RCC HAL module to compute the system frequency
* (when HSE is used as system clock source, directly or through the PLL).
*/
#if !defined (HSE_VALUE)
#define HSE_VALUE 8000000U /*!< Value of the External oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (HSE_STARTUP_TIMEOUT)
#define HSE_STARTUP_TIMEOUT 100U /*!< Time out for HSE start up, in ms */
#endif /* HSE_STARTUP_TIMEOUT */
/**
* @brief Internal High Speed oscillator (HSI) value.
* This value is used by the RCC HAL module to compute the system frequency
* (when HSI is used as system clock source, directly or through the PLL).
*/
#if !defined (HSI_VALUE)
#define HSI_VALUE ((uint32_t)16000000U) /*!< Value of the Internal oscillator in Hz*/
#endif /* HSI_VALUE */
/**
* @brief Internal Low Speed oscillator (LSI) value.
*/
#if !defined (LSI_VALUE)
#define LSI_VALUE 32000U /*!< LSI Typical Value in Hz*/
#endif /* LSI_VALUE */ /*!< Value of the Internal Low Speed oscillator in Hz
The real value may vary depending on the variations
in voltage and temperature.*/
/**
* @brief External Low Speed oscillator (LSE) value.
*/
#if !defined (LSE_VALUE)
#define LSE_VALUE 32768U /*!< Value of the External Low Speed oscillator in Hz */
#endif /* LSE_VALUE */
#if !defined (LSE_STARTUP_TIMEOUT)
#define LSE_STARTUP_TIMEOUT 5000U /*!< Time out for LSE start up, in ms */
#endif /* LSE_STARTUP_TIMEOUT */
/**
* @brief External clock source for I2S peripheral
* This value is used by the I2S HAL module to compute the I2S clock source
* frequency, this source is inserted directly through I2S_CKIN pad.
*/
#if !defined (EXTERNAL_CLOCK_VALUE)
#define EXTERNAL_CLOCK_VALUE 12288000U /*!< Value of the External audio frequency in Hz*/
#endif /* EXTERNAL_CLOCK_VALUE */
/* Tip: To avoid modifying this file each time you need to use different HSE,
=== you can define the HSE value in your toolchain compiler preprocessor. */
/* ########################### System Configuration ######################### */
/**
* @brief This is the HAL system configuration section
*/
#define VDD_VALUE 3300U /*!< Value of VDD in mv */
#define TICK_INT_PRIORITY 0U /*!< tick interrupt priority */
#define USE_RTOS 0U
#define PREFETCH_ENABLE 1U
#define INSTRUCTION_CACHE_ENABLE 1U
#define DATA_CACHE_ENABLE 1U
#define USE_HAL_ADC_REGISTER_CALLBACKS 0U /* ADC register callback disabled */
#define USE_HAL_CAN_REGISTER_CALLBACKS 0U /* CAN register callback disabled */
#define USE_HAL_CEC_REGISTER_CALLBACKS 0U /* CEC register callback disabled */
#define USE_HAL_CRYP_REGISTER_CALLBACKS 0U /* CRYP register callback disabled */
#define USE_HAL_DAC_REGISTER_CALLBACKS 0U /* DAC register callback disabled */
#define USE_HAL_DCMI_REGISTER_CALLBACKS 0U /* DCMI register callback disabled */
#define USE_HAL_DFSDM_REGISTER_CALLBACKS 0U /* DFSDM register callback disabled */
#define USE_HAL_DMA2D_REGISTER_CALLBACKS 0U /* DMA2D register callback disabled */
#define USE_HAL_DSI_REGISTER_CALLBACKS 0U /* DSI register callback disabled */
#define USE_HAL_ETH_REGISTER_CALLBACKS 0U /* ETH register callback disabled */
#define USE_HAL_HASH_REGISTER_CALLBACKS 0U /* HASH register callback disabled */
#define USE_HAL_HCD_REGISTER_CALLBACKS 0U /* HCD register callback disabled */
#define USE_HAL_I2C_REGISTER_CALLBACKS 0U /* I2C register callback disabled */
#define USE_HAL_FMPI2C_REGISTER_CALLBACKS 0U /* FMPI2C register callback disabled */
#define USE_HAL_FMPSMBUS_REGISTER_CALLBACKS 0U /* FMPSMBUS register callback disabled */
#define USE_HAL_I2S_REGISTER_CALLBACKS 0U /* I2S register callback disabled */
#define USE_HAL_IRDA_REGISTER_CALLBACKS 0U /* IRDA register callback disabled */
#define USE_HAL_LPTIM_REGISTER_CALLBACKS 0U /* LPTIM register callback disabled */
#define USE_HAL_LTDC_REGISTER_CALLBACKS 0U /* LTDC register callback disabled */
#define USE_HAL_MMC_REGISTER_CALLBACKS 0U /* MMC register callback disabled */
#define USE_HAL_NAND_REGISTER_CALLBACKS 0U /* NAND register callback disabled */
#define USE_HAL_NOR_REGISTER_CALLBACKS 0U /* NOR register callback disabled */
#define USE_HAL_PCCARD_REGISTER_CALLBACKS 0U /* PCCARD register callback disabled */
#define USE_HAL_PCD_REGISTER_CALLBACKS 0U /* PCD register callback disabled */
#define USE_HAL_QSPI_REGISTER_CALLBACKS 0U /* QSPI register callback disabled */
#define USE_HAL_RNG_REGISTER_CALLBACKS 0U /* RNG register callback disabled */
#define USE_HAL_RTC_REGISTER_CALLBACKS 0U /* RTC register callback disabled */
#define USE_HAL_SAI_REGISTER_CALLBACKS 0U /* SAI register callback disabled */
#define USE_HAL_SD_REGISTER_CALLBACKS 0U /* SD register callback disabled */
#define USE_HAL_SMARTCARD_REGISTER_CALLBACKS 0U /* SMARTCARD register callback disabled */
#define USE_HAL_SDRAM_REGISTER_CALLBACKS 0U /* SDRAM register callback disabled */
#define USE_HAL_SRAM_REGISTER_CALLBACKS 0U /* SRAM register callback disabled */
#define USE_HAL_SPDIFRX_REGISTER_CALLBACKS 0U /* SPDIFRX register callback disabled */
#define USE_HAL_SMBUS_REGISTER_CALLBACKS 0U /* SMBUS register callback disabled */
#define USE_HAL_SPI_REGISTER_CALLBACKS 0U /* SPI register callback disabled */
#define USE_HAL_TIM_REGISTER_CALLBACKS 0U /* TIM register callback disabled */
#define USE_HAL_UART_REGISTER_CALLBACKS 0U /* UART register callback disabled */
#define USE_HAL_USART_REGISTER_CALLBACKS 0U /* USART register callback disabled */
#define USE_HAL_WWDG_REGISTER_CALLBACKS 0U /* WWDG register callback disabled */
/* ########################## Assert Selection ############################## */
/**
* @brief Uncomment the line below to expanse the "assert_param" macro in the
* HAL drivers code
*/
/* #define USE_FULL_ASSERT 1U */
/* ################## Ethernet peripheral configuration ##################### */
/* Section 1 : Ethernet peripheral configuration */
/* MAC ADDRESS: MAC_ADDR0:MAC_ADDR1:MAC_ADDR2:MAC_ADDR3:MAC_ADDR4:MAC_ADDR5 */
#define MAC_ADDR0 2U
#define MAC_ADDR1 0U
#define MAC_ADDR2 0U
#define MAC_ADDR3 0U
#define MAC_ADDR4 0U
#define MAC_ADDR5 0U
/* Definition of the Ethernet driver buffers size and count */
#define ETH_RX_BUF_SIZE /* buffer size for receive */
#define ETH_TX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for transmit */
#define ETH_RXBUFNB 4U /* 4 Rx buffers of size ETH_RX_BUF_SIZE */
#define ETH_TXBUFNB 4U /* 4 Tx buffers of size ETH_TX_BUF_SIZE */
/* Section 2: PHY configuration section */
/* DP83848_PHY_ADDRESS Address*/
#define DP83848_PHY_ADDRESS
/* PHY Reset delay these values are based on a 1 ms Systick interrupt*/
#define PHY_RESET_DELAY 0x000000FFU
/* PHY Configuration delay */
#define PHY_CONFIG_DELAY 0x00000FFFU
#define PHY_READ_TO 0x0000FFFFU
#define PHY_WRITE_TO 0x0000FFFFU
/* Section 3: Common PHY Registers */
#define PHY_BCR ((uint16_t)0x0000U) /*!< Transceiver Basic Control Register */
#define PHY_BSR ((uint16_t)0x0001U) /*!< Transceiver Basic Status Register */
#define PHY_RESET ((uint16_t)0x8000U) /*!< PHY Reset */
#define PHY_LOOPBACK ((uint16_t)0x4000U) /*!< Select loop-back mode */
#define PHY_FULLDUPLEX_100M ((uint16_t)0x2100U) /*!< Set the full-duplex mode at 100 Mb/s */
#define PHY_HALFDUPLEX_100M ((uint16_t)0x2000U) /*!< Set the half-duplex mode at 100 Mb/s */
#define PHY_FULLDUPLEX_10M ((uint16_t)0x0100U) /*!< Set the full-duplex mode at 10 Mb/s */
#define PHY_HALFDUPLEX_10M ((uint16_t)0x0000U) /*!< Set the half-duplex mode at 10 Mb/s */
#define PHY_AUTONEGOTIATION ((uint16_t)0x1000U) /*!< Enable auto-negotiation function */
#define PHY_RESTART_AUTONEGOTIATION ((uint16_t)0x0200U) /*!< Restart auto-negotiation function */
#define PHY_POWERDOWN ((uint16_t)0x0800U) /*!< Select the power down mode */
#define PHY_ISOLATE ((uint16_t)0x0400U) /*!< Isolate PHY from MII */
#define PHY_AUTONEGO_COMPLETE ((uint16_t)0x0020U) /*!< Auto-Negotiation process completed */
#define PHY_LINKED_STATUS ((uint16_t)0x0004U) /*!< Valid link established */
#define PHY_JABBER_DETECTION ((uint16_t)0x0002U) /*!< Jabber condition detected */
/* Section 4: Extended PHY Registers */
#define PHY_SR ((uint16_t)) /*!< PHY status register Offset */
#define PHY_SPEED_STATUS ((uint16_t)) /*!< PHY Speed mask */
#define PHY_DUPLEX_STATUS ((uint16_t)) /*!< PHY Duplex mask */
/* ################## SPI peripheral configuration ########################## */
/* CRC FEATURE: Use to activate CRC feature inside HAL SPI Driver
* Activated: CRC code is present inside driver
* Deactivated: CRC code cleaned from driver
*/
#define USE_SPI_CRC 0U
/* Includes ------------------------------------------------------------------*/
/**
* @brief Include module's header file
*/
#ifdef HAL_RCC_MODULE_ENABLED
#include "stm32f4xx_hal_rcc.h"
#endif /* HAL_RCC_MODULE_ENABLED */
#ifdef HAL_GPIO_MODULE_ENABLED
#include "stm32f4xx_hal_gpio.h"
#endif /* HAL_GPIO_MODULE_ENABLED */
#ifdef HAL_EXTI_MODULE_ENABLED
#include "stm32f4xx_hal_exti.h"
#endif /* HAL_EXTI_MODULE_ENABLED */
#ifdef HAL_DMA_MODULE_ENABLED
#include "stm32f4xx_hal_dma.h"
#endif /* HAL_DMA_MODULE_ENABLED */
#ifdef HAL_CORTEX_MODULE_ENABLED
#include "stm32f4xx_hal_cortex.h"
#endif /* HAL_CORTEX_MODULE_ENABLED */
#ifdef HAL_ADC_MODULE_ENABLED
#include "stm32f4xx_hal_adc.h"
#endif /* HAL_ADC_MODULE_ENABLED */
#ifdef HAL_CAN_MODULE_ENABLED
#include "stm32f4xx_hal_can.h"
#endif /* HAL_CAN_MODULE_ENABLED */
#ifdef HAL_CAN_LEGACY_MODULE_ENABLED
#include "stm32f4xx_hal_can_legacy.h"
#endif /* HAL_CAN_LEGACY_MODULE_ENABLED */
#ifdef HAL_CRC_MODULE_ENABLED
#include "stm32f4xx_hal_crc.h"
#endif /* HAL_CRC_MODULE_ENABLED */
#ifdef HAL_CRYP_MODULE_ENABLED
#include "stm32f4xx_hal_cryp.h"
#endif /* HAL_CRYP_MODULE_ENABLED */
#ifdef HAL_DMA2D_MODULE_ENABLED
#include "stm32f4xx_hal_dma2d.h"
#endif /* HAL_DMA2D_MODULE_ENABLED */
#ifdef HAL_DAC_MODULE_ENABLED
#include "stm32f4xx_hal_dac.h"
#endif /* HAL_DAC_MODULE_ENABLED */
#ifdef HAL_DCMI_MODULE_ENABLED
#include "stm32f4xx_hal_dcmi.h"
#endif /* HAL_DCMI_MODULE_ENABLED */
#ifdef HAL_ETH_MODULE_ENABLED
#include "stm32f4xx_hal_eth.h"
#endif /* HAL_ETH_MODULE_ENABLED */
#ifdef HAL_ETH_LEGACY_MODULE_ENABLED
#include "stm32f4xx_hal_eth_legacy.h"
#endif /* HAL_ETH_LEGACY_MODULE_ENABLED */
#ifdef HAL_FLASH_MODULE_ENABLED
#include "stm32f4xx_hal_flash.h"
#endif /* HAL_FLASH_MODULE_ENABLED */
#ifdef HAL_SRAM_MODULE_ENABLED
#include "stm32f4xx_hal_sram.h"
#endif /* HAL_SRAM_MODULE_ENABLED */
#ifdef HAL_NOR_MODULE_ENABLED
#include "stm32f4xx_hal_nor.h"
#endif /* HAL_NOR_MODULE_ENABLED */
#ifdef HAL_NAND_MODULE_ENABLED
#include "stm32f4xx_hal_nand.h"
#endif /* HAL_NAND_MODULE_ENABLED */
#ifdef HAL_PCCARD_MODULE_ENABLED
#include "stm32f4xx_hal_pccard.h"
#endif /* HAL_PCCARD_MODULE_ENABLED */
#ifdef HAL_SDRAM_MODULE_ENABLED
#include "stm32f4xx_hal_sdram.h"
#endif /* HAL_SDRAM_MODULE_ENABLED */
#ifdef HAL_HASH_MODULE_ENABLED
#include "stm32f4xx_hal_hash.h"
#endif /* HAL_HASH_MODULE_ENABLED */
#ifdef HAL_I2C_MODULE_ENABLED
#include "stm32f4xx_hal_i2c.h"
#endif /* HAL_I2C_MODULE_ENABLED */
#ifdef HAL_SMBUS_MODULE_ENABLED
#include "stm32f4xx_hal_smbus.h"
#endif /* HAL_SMBUS_MODULE_ENABLED */
#ifdef HAL_I2S_MODULE_ENABLED
#include "stm32f4xx_hal_i2s.h"
#endif /* HAL_I2S_MODULE_ENABLED */
#ifdef HAL_IWDG_MODULE_ENABLED
#include "stm32f4xx_hal_iwdg.h"
#endif /* HAL_IWDG_MODULE_ENABLED */
#ifdef HAL_LTDC_MODULE_ENABLED
#include "stm32f4xx_hal_ltdc.h"
#endif /* HAL_LTDC_MODULE_ENABLED */
#ifdef HAL_PWR_MODULE_ENABLED
#include "stm32f4xx_hal_pwr.h"
#endif /* HAL_PWR_MODULE_ENABLED */
#ifdef HAL_RNG_MODULE_ENABLED
#include "stm32f4xx_hal_rng.h"
#endif /* HAL_RNG_MODULE_ENABLED */
#ifdef HAL_RTC_MODULE_ENABLED
#include "stm32f4xx_hal_rtc.h"
#endif /* HAL_RTC_MODULE_ENABLED */
#ifdef HAL_SAI_MODULE_ENABLED
#include "stm32f4xx_hal_sai.h"
#endif /* HAL_SAI_MODULE_ENABLED */
#ifdef HAL_SD_MODULE_ENABLED
#include "stm32f4xx_hal_sd.h"
#endif /* HAL_SD_MODULE_ENABLED */
#ifdef HAL_SPI_MODULE_ENABLED
#include "stm32f4xx_hal_spi.h"
#endif /* HAL_SPI_MODULE_ENABLED */
#ifdef HAL_TIM_MODULE_ENABLED
#include "stm32f4xx_hal_tim.h"
#endif /* HAL_TIM_MODULE_ENABLED */
#ifdef HAL_UART_MODULE_ENABLED
#include "stm32f4xx_hal_uart.h"
#endif /* HAL_UART_MODULE_ENABLED */
#ifdef HAL_USART_MODULE_ENABLED
#include "stm32f4xx_hal_usart.h"
#endif /* HAL_USART_MODULE_ENABLED */
#ifdef HAL_IRDA_MODULE_ENABLED
#include "stm32f4xx_hal_irda.h"
#endif /* HAL_IRDA_MODULE_ENABLED */
#ifdef HAL_SMARTCARD_MODULE_ENABLED
#include "stm32f4xx_hal_smartcard.h"
#endif /* HAL_SMARTCARD_MODULE_ENABLED */
#ifdef HAL_WWDG_MODULE_ENABLED
#include "stm32f4xx_hal_wwdg.h"
#endif /* HAL_WWDG_MODULE_ENABLED */
#ifdef HAL_PCD_MODULE_ENABLED
#include "stm32f4xx_hal_pcd.h"
#endif /* HAL_PCD_MODULE_ENABLED */
#ifdef HAL_HCD_MODULE_ENABLED
#include "stm32f4xx_hal_hcd.h"
#endif /* HAL_HCD_MODULE_ENABLED */
#ifdef HAL_DSI_MODULE_ENABLED
#include "stm32f4xx_hal_dsi.h"
#endif /* HAL_DSI_MODULE_ENABLED */
#ifdef HAL_QSPI_MODULE_ENABLED
#include "stm32f4xx_hal_qspi.h"
#endif /* HAL_QSPI_MODULE_ENABLED */
#ifdef HAL_CEC_MODULE_ENABLED
#include "stm32f4xx_hal_cec.h"
#endif /* HAL_CEC_MODULE_ENABLED */
#ifdef HAL_FMPI2C_MODULE_ENABLED
#include "stm32f4xx_hal_fmpi2c.h"
#endif /* HAL_FMPI2C_MODULE_ENABLED */
#ifdef HAL_FMPSMBUS_MODULE_ENABLED
#include "stm32f4xx_hal_fmpsmbus.h"
#endif /* HAL_FMPSMBUS_MODULE_ENABLED */
#ifdef HAL_SPDIFRX_MODULE_ENABLED
#include "stm32f4xx_hal_spdifrx.h"
#endif /* HAL_SPDIFRX_MODULE_ENABLED */
#ifdef HAL_DFSDM_MODULE_ENABLED
#include "stm32f4xx_hal_dfsdm.h"
#endif /* HAL_DFSDM_MODULE_ENABLED */
#ifdef HAL_LPTIM_MODULE_ENABLED
#include "stm32f4xx_hal_lptim.h"
#endif /* HAL_LPTIM_MODULE_ENABLED */
#ifdef HAL_MMC_MODULE_ENABLED
#include "stm32f4xx_hal_mmc.h"
#endif /* HAL_MMC_MODULE_ENABLED */
/* Exported macro ------------------------------------------------------------*/
#ifdef USE_FULL_ASSERT
/**
* @brief The assert_param macro is used for function's parameters check.
* @param expr If expr is false, it calls assert_failed function
* which reports the name of the source file and the source
* line number of the call that failed.
* If expr is true, it returns no value.
* @retval None
*/
#define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__))
/* Exported functions ------------------------------------------------------- */
void assert_failed(uint8_t* file, uint32_t line);
#else
#define assert_param(expr) ((void)0U)
#endif /* USE_FULL_ASSERT */
#ifdef __cplusplus
}
#endif
#endif /* __STM32F4xx_HAL_CONF_H */

90
Core/Inc/stm32f4xx_it.h Normal file
View File

@ -0,0 +1,90 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file stm32f4xx_it.h
* @brief This file contains the headers of the interrupt handlers.
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F4xx_IT_H
#define __STM32F4xx_IT_H
#ifdef __cplusplus
extern "C" {
#endif
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Exported types ------------------------------------------------------------*/
/* USER CODE BEGIN ET */
extern int it_5ms_falg;
extern int it_5ms_cnt;
extern int it_10ms_falg;
extern int it_10ms_cnt;
extern int it_50ms_falg;
extern int it_50ms_cnt;
extern int it_100ms_falg;
extern int it_100ms_cnt;
extern int it_300ms_falg;
extern int it_300ms_cnt;
extern int it_500ms_falg;
extern int it_500ms_cnt;
extern int it_1000ms_falg;
extern int it_1000ms_cnt;
/* USER CODE END ET */
/* Exported constants --------------------------------------------------------*/
/* USER CODE BEGIN EC */
/* USER CODE END EC */
/* Exported macro ------------------------------------------------------------*/
/* USER CODE BEGIN EM */
/* USER CODE END EM */
/* Exported functions prototypes ---------------------------------------------*/
void NMI_Handler(void);
void HardFault_Handler(void);
void MemManage_Handler(void);
void BusFault_Handler(void);
void UsageFault_Handler(void);
void SVC_Handler(void);
void DebugMon_Handler(void);
void PendSV_Handler(void);
void SysTick_Handler(void);
void DMA1_Stream3_IRQHandler(void);
void DMA1_Stream6_IRQHandler(void);
void TIM3_IRQHandler(void);
void USART1_IRQHandler(void);
void USART2_IRQHandler(void);
void USART3_IRQHandler(void);
void TIM7_IRQHandler(void);
void DMA2_Stream0_IRQHandler(void);
void DMA2_Stream1_IRQHandler(void);
void DMA2_Stream6_IRQHandler(void);
void USART6_IRQHandler(void);
/* USER CODE BEGIN EFP */
/* USER CODE END EFP */
#ifdef __cplusplus
}
#endif
#endif /* __STM32F4xx_IT_H */

55
Core/Inc/tim.h Normal file
View File

@ -0,0 +1,55 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file tim.h
* @brief This file contains all the function prototypes for
* the tim.c file
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __TIM_H__
#define __TIM_H__
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* USER CODE BEGIN Private defines */
/* USER CODE END Private defines */
void MX_TIM3_Init(void);
void MX_TIM4_Init(void);
void MX_TIM7_Init(void);
/* USER CODE BEGIN Prototypes */
void encode_init(void);
void modbus_tim_init(void);
void modbus_tim_callback(void);
/* USER CODE END Prototypes */
#ifdef __cplusplus
}
#endif
#endif /* __TIM_H__ */

81
Core/Inc/usart.h Normal file
View File

@ -0,0 +1,81 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file usart.h
* @brief This file contains all the function prototypes for
* the usart.c file
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __USART_H__
#define __USART_H__
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* USER CODE BEGIN Includes */
#include "stdio.h"
/* USER CODE END Includes */
/* USER CODE BEGIN Private defines */
typedef struct
{
uint8_t *rx_buf; //接收缓冲数组
uint16_t rx_buf_cnt; //接收缓冲计数值
uint16_t rx_size; //接收数据大小
uint8_t rx_flag; //接收完成标志位
uint8_t *tx_buf; //发送缓冲数组
uint16_t tx_buf_cnt; //发送缓冲计数值
uint16_t tx_size; //实际发送数据大小
}UART_BUF; //串口结构体
extern UART_BUF usart3; //串口结构体实体
extern uint8_t usart6_rx_buf[64]; //发送数据缓冲数组
extern uint8_t usart6_tx_buf[64]; //接收数据缓冲数据
//#ifdef __GNUC__
// #define PUTCHAR_PROTOTYPE int _io_putchar(int ch)
// #else
// #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
// #endif
//extern PUTCHAR_PROTOTYPE;
/* USER CODE END Private defines */
void MX_USART1_UART_Init(void);
void MX_USART2_UART_Init(void);
void MX_USART3_UART_Init(void);
void MX_USART6_UART_Init(void);
/* USER CODE BEGIN Prototypes */
void modbus_init(void);
void modbus_callback(void);
void modbus_send(USART_TypeDef *Luart,uint8_t *Tx_Buf,uint16_t Size);
void usart2_laser_send(USART_TypeDef *Luart,uint8_t *Tx_Buf,uint16_t Size);
void usart6_send(uint8_t *Tx_Buf,uint16_t Size);
void usart6_rx_cb(void);
/* USER CODE END Prototypes */
#ifdef __cplusplus
}
#endif
#endif /* __USART_H__ */

171
Core/Src/adc.c Normal file
View File

@ -0,0 +1,171 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file adc.c
* @brief This file provides code for the configuration
* of the ADC instances.
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "adc.h"
/* USER CODE BEGIN 0 */
uint16_t ADC_ConvertedValue[3] = {0};//ADC数据
//温度数据临时储存
uint16_t adc_temp[10] = {0};
uint32_t temp_sum = 0;
//AO1反馈数据临时储存
uint16_t adc_ao1[10] = {0};
uint32_t ao1_sum = 0;
//AO2反馈数据临时储存
uint16_t adc_ao2[10] = {0};
uint32_t ao2_sum = 0;
//ADC采样计数
int adc_count = 0;
uint8_t ADC_TC_Flag = 0;//ADC数据转换标志
/* USER CODE END 0 */
/* ADC1 init function */
void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
LL_ADC_InitTypeDef ADC_InitStruct = {0};
LL_ADC_REG_InitTypeDef ADC_REG_InitStruct = {0};
LL_ADC_CommonInitTypeDef ADC_CommonInitStruct = {0};
LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
/* Peripheral clock enable */
LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_ADC1);
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOA);
/**ADC1 GPIO Configuration
PA0-WKUP ------> ADC1_IN0
PA1 ------> ADC1_IN1
PA2 ------> ADC1_IN2
*/
GPIO_InitStruct.Pin = ADC_IN0_AO1_Pin|ADC_IN1_A02_Pin|ADC_IN2_RT_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* ADC1 DMA Init */
/* ADC1 Init */
LL_DMA_SetChannelSelection(DMA2, LL_DMA_STREAM_0, LL_DMA_CHANNEL_0);
LL_DMA_SetDataTransferDirection(DMA2, LL_DMA_STREAM_0, LL_DMA_DIRECTION_PERIPH_TO_MEMORY);
LL_DMA_SetStreamPriorityLevel(DMA2, LL_DMA_STREAM_0, LL_DMA_PRIORITY_LOW);
LL_DMA_SetMode(DMA2, LL_DMA_STREAM_0, LL_DMA_MODE_CIRCULAR);
LL_DMA_SetPeriphIncMode(DMA2, LL_DMA_STREAM_0, LL_DMA_PERIPH_NOINCREMENT);
LL_DMA_SetMemoryIncMode(DMA2, LL_DMA_STREAM_0, LL_DMA_MEMORY_INCREMENT);
LL_DMA_SetPeriphSize(DMA2, LL_DMA_STREAM_0, LL_DMA_PDATAALIGN_HALFWORD);
LL_DMA_SetMemorySize(DMA2, LL_DMA_STREAM_0, LL_DMA_MDATAALIGN_HALFWORD);
LL_DMA_DisableFifoMode(DMA2, LL_DMA_STREAM_0);
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
ADC_InitStruct.Resolution = LL_ADC_RESOLUTION_12B;
ADC_InitStruct.DataAlignment = LL_ADC_DATA_ALIGN_RIGHT;
ADC_InitStruct.SequencersScanMode = LL_ADC_SEQ_SCAN_ENABLE;
LL_ADC_Init(ADC1, &ADC_InitStruct);
ADC_REG_InitStruct.TriggerSource = LL_ADC_REG_TRIG_SOFTWARE;
ADC_REG_InitStruct.SequencerLength = LL_ADC_REG_SEQ_SCAN_ENABLE_3RANKS;
ADC_REG_InitStruct.SequencerDiscont = LL_ADC_REG_SEQ_DISCONT_DISABLE;
ADC_REG_InitStruct.ContinuousMode = LL_ADC_REG_CONV_SINGLE;
ADC_REG_InitStruct.DMATransfer = LL_ADC_REG_DMA_TRANSFER_UNLIMITED;
LL_ADC_REG_Init(ADC1, &ADC_REG_InitStruct);
LL_ADC_REG_SetFlagEndOfConversion(ADC1, LL_ADC_REG_FLAG_EOC_SEQUENCE_CONV);
ADC_CommonInitStruct.CommonClock = LL_ADC_CLOCK_SYNC_PCLK_DIV4;
ADC_CommonInitStruct.Multimode = LL_ADC_MULTI_INDEPENDENT;
LL_ADC_CommonInit(__LL_ADC_COMMON_INSTANCE(ADC1), &ADC_CommonInitStruct);
/** Configure Regular Channel
*/
LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_1, LL_ADC_CHANNEL_0);
LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_0, LL_ADC_SAMPLINGTIME_480CYCLES);
/** Configure Regular Channel
*/
LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_2, LL_ADC_CHANNEL_1);
LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_1, LL_ADC_SAMPLINGTIME_480CYCLES);
/** Configure Regular Channel
*/
LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_3, LL_ADC_CHANNEL_2);
LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_2, LL_ADC_SAMPLINGTIME_480CYCLES);
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/* USER CODE BEGIN 1 */
void adc1_start_dma(void)
{
LL_DMA_SetDataLength(DMA2,LL_DMA_STREAM_0,3);
LL_DMA_SetPeriphAddress(DMA2,LL_DMA_STREAM_0,LL_ADC_DMA_GetRegAddr(ADC1,LL_ADC_DMA_REG_REGULAR_DATA));
LL_DMA_SetMemoryAddress(DMA2,LL_DMA_STREAM_0,(uint32_t)ADC_ConvertedValue);
LL_DMA_EnableStream(DMA2,LL_DMA_STREAM_0);
LL_DMA_ClearFlag_TC0(DMA2);
LL_DMA_EnableIT_TC(DMA2, LL_DMA_STREAM_0);
LL_ADC_Enable(ADC1);
LL_ADC_REG_StartConversionSWStart(ADC1);
LL_ADC_REG_SetDMATransfer(ADC1,LL_ADC_REG_DMA_TRANSFER_UNLIMITED);
}
void get_adc_value(void)
{
if(ADC_TC_Flag == 1)
{
adc_ao2[adc_count] = ADC_ConvertedValue[0];
ao2_sum += adc_ao2[adc_count];
adc_ao1[adc_count] = ADC_ConvertedValue[1];
ao1_sum += adc_ao1[adc_count];
adc_temp[adc_count] = ADC_ConvertedValue[2];
temp_sum += adc_temp[adc_count];
adc_count ++;
if(adc_count > 9)
{
adc_count = 0;
InputReg[0] = temp_sum / 10;//环境温度
temp_sum = 0;
//InputReg[1] = (ao1_sum / 50) * 3300 / 4096;//AO反馈
InputReg[1] = (uint16_t)(((ao1_sum / 10) * 3300 / 4096 - 1500) / 0.082);
ao1_sum = 0;
//InputReg[9] = (ao2_sum / 50) * 3300 / 4096;//AO反馈备用0-25000uA
InputReg[10] = (uint16_t)((((ao2_sum / 10) * 3300 / 4096) - 1500) / 0.082);
ao2_sum = 0;
}
ADC_TC_Flag = 0;
}
}
/* USER CODE END 1 */

69
Core/Src/dma.c Normal file
View File

@ -0,0 +1,69 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file dma.c
* @brief This file provides code for the configuration
* of all the requested memory to memory DMA transfers.
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "dma.h"
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/*----------------------------------------------------------------------------*/
/* Configure DMA */
/*----------------------------------------------------------------------------*/
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/**
* Enable DMA controller clock
*/
void MX_DMA_Init(void)
{
/* Init with LL driver */
/* DMA controller clock enable */
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_DMA2);
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_DMA1);
/* DMA interrupt init */
/* DMA1_Stream3_IRQn interrupt configuration */
NVIC_SetPriority(DMA1_Stream3_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
NVIC_EnableIRQ(DMA1_Stream3_IRQn);
/* DMA1_Stream6_IRQn interrupt configuration */
NVIC_SetPriority(DMA1_Stream6_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
NVIC_EnableIRQ(DMA1_Stream6_IRQn);
/* DMA2_Stream0_IRQn interrupt configuration */
NVIC_SetPriority(DMA2_Stream0_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
NVIC_EnableIRQ(DMA2_Stream0_IRQn);
/* DMA2_Stream1_IRQn interrupt configuration */
NVIC_SetPriority(DMA2_Stream1_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
NVIC_EnableIRQ(DMA2_Stream1_IRQn);
/* DMA2_Stream6_IRQn interrupt configuration */
NVIC_SetPriority(DMA2_Stream6_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
NVIC_EnableIRQ(DMA2_Stream6_IRQn);
}
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */

222
Core/Src/gpio.c Normal file
View File

@ -0,0 +1,222 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file gpio.c
* @brief This file provides code for the configuration
* of all used GPIO pins.
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "gpio.h"
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/*----------------------------------------------------------------------------*/
/* Configure GPIO */
/*----------------------------------------------------------------------------*/
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/** Configure pins as
* Analog
* Input
* Output
* EVENT_OUT
* EXTI
* Free pins are configured automatically as Analog (this feature is enabled through
* the Code Generation settings)
*/
void MX_GPIO_Init(void)
{
LL_EXTI_InitTypeDef EXTI_InitStruct = {0};
LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOE);
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOC);
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOH);
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOA);
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOB);
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOD);
/**/
LL_GPIO_ResetOutputPin(GPIOE, SPI1_NSS4_Pin|SPI1_NSS3_Pin|SPI1_NSS2_Pin|SPI1_NSS1_Pin
|SENSOR_SELECT_Pin|DO1_Pin|DO2_Pin|DO3_Pin
|DO4_Pin|DO5_Pin|DO6_Pin|DO7_Pin
|DO8_Pin|PE15_SPI7_Pin);
/**/
LL_GPIO_ResetOutputPin(GPIOC, PC13_SPI8_Pin|PC14_SPI8_Pin|PC15_SPI8_Pin|HC165_INH_Pin
|HC165_LD_Pin|HC165_CLK_Pin|HC595_SER_Pin|HC595_OE_Pin
|AO2_SPI6_MOSI_Pin|AO2_SPI6_SCK_Pin);
/**/
LL_GPIO_ResetOutputPin(GPIOA, PA3_SPI8_Pin|PA4_SPI8_Pin|AO2_SPI6_NSS_Pin);
/**/
LL_GPIO_ResetOutputPin(GPIOB, HC595_RCLK_Pin|HC595_SRCLK_Pin|HC595_SRCLR_Pin|PB10_SPI7_Pin
|PB11_SPI7_Pin|SPI1_NSS7_Pin|SPI1_NSS6_Pin|SPI1_NSS5_Pin);
/**/
LL_GPIO_ResetOutputPin(GPIOD, AO1_SPI5_MOSI_Pin|AO1_SPI5_SCK_Pin|AO1_SPI5_NSS_Pin|PD14_SPI7_Pin
|PD15_SPI7_Pin|ADS1256_PDWN_Pin|CH395Q_RST_Pin|CH395Q_RSTI_Pin
|SPI1_NSS8_Pin);
/**/
GPIO_InitStruct.Pin = SPI1_NSS4_Pin|SPI1_NSS3_Pin|SPI1_NSS2_Pin|SPI1_NSS1_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
LL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = SENSOR_SELECT_Pin|DO1_Pin|DO2_Pin|DO3_Pin
|DO4_Pin|DO5_Pin|DO6_Pin|DO7_Pin
|DO8_Pin|PE15_SPI7_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = PC13_SPI8_Pin|PC14_SPI8_Pin|PC15_SPI8_Pin|HC165_INH_Pin
|HC165_LD_Pin|HC165_CLK_Pin|HC595_SER_Pin|HC595_OE_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = HC165_DAT_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(HC165_DAT_GPIO_Port, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = PA3_SPI8_Pin|PA4_SPI8_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = HC595_RCLK_Pin|HC595_SRCLK_Pin|HC595_SRCLR_Pin|PB10_SPI7_Pin
|PB11_SPI7_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = LL_GPIO_PIN_10;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = AO1_SPI5_MOSI_Pin|AO1_SPI5_SCK_Pin|AO1_SPI5_NSS_Pin|SPI1_NSS8_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
LL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = PD14_SPI7_Pin|PD15_SPI7_Pin|ADS1256_PDWN_Pin|CH395Q_RST_Pin
|CH395Q_RSTI_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = AO2_SPI6_MOSI_Pin|AO2_SPI6_SCK_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
LL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = AO2_SPI6_NSS_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
LL_GPIO_Init(AO2_SPI6_NSS_GPIO_Port, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = LL_GPIO_PIN_11|LL_GPIO_PIN_12;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = ADS1256_DRDY_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
LL_GPIO_Init(ADS1256_DRDY_GPIO_Port, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = SPI1_NSS7_Pin|SPI1_NSS6_Pin|SPI1_NSS5_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = LL_GPIO_PIN_9;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = LL_GPIO_PIN_0|LL_GPIO_PIN_1;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/**/
LL_SYSCFG_SetEXTISource(LL_SYSCFG_EXTI_PORTD, LL_SYSCFG_EXTI_LINE3);
/**/
EXTI_InitStruct.Line_0_31 = LL_EXTI_LINE_3;
EXTI_InitStruct.LineCommand = ENABLE;
EXTI_InitStruct.Mode = LL_EXTI_MODE_IT;
EXTI_InitStruct.Trigger = LL_EXTI_TRIGGER_RISING;
LL_EXTI_Init(&EXTI_InitStruct);
/**/
LL_GPIO_SetPinPull(CH395Q_INT_GPIO_Port, CH395Q_INT_Pin, LL_GPIO_PULL_NO);
/**/
LL_GPIO_SetPinMode(CH395Q_INT_GPIO_Port, CH395Q_INT_Pin, LL_GPIO_MODE_INPUT);
}
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */

446
Core/Src/main.c Normal file
View File

@ -0,0 +1,446 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "dma.h"
#include "spi.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void sys_init()
{
ADS1256_Init();
// hc595_init(&hc595);
_74hc165_init();
dac7311_init();
modbus_tim_init();
modbus_init();
adc1_start_dma();
MS5803Init();
laser_init(usart2_laser_send);
// encode_init();
}
char step_cnt = 0;
int i = 0;
int flow_flag = 0;
int bub_flag = 0;//气泡检测状态
float AO1_data = 0;//AO1输出电流值
float AO2_data = 0;//AO2输出电流值
uint16_t dis_temp = 0;//DI输入存储中间量
uint32_t flow1 = 0;
uint32_t flow2 = 0;
uint32_t flow3 = 0;
uint8_t get_mf4700_addr[] = {0x01,0x03,0x00,0x01,0x00,0x01,0xD5,0xCA};
uint8_t get_mf5000_addr[] = {0x02,0x03,0x00,0x81,0x00,0x01,0xD4,0x11};
void sys_task(void)
{
//AO(0-25mA)输出,每当寄存器内数值更新时输出电流同步更新
if(!(AO1_data == (float)(HoldReg[0]) / 1000))
{
AO1_data = (float)(HoldReg[0]) / 1000;
if(AO1_data > 25)
AO1_data = 25;
ao1_set(AO1_data);
}
if(!(AO2_data == (float)(HoldReg[1]) / 1000))
{
AO2_data = (float)(HoldReg[1]) / 1000;
if(AO2_data > 25)
AO2_data = 25;
ao2_set(AO2_data);
}
adc_task();//ADS1256数据采样
ms5803_task();//ms5803数据采样
laser_task();//获取一次激光传感器数据
get_adc_value();//得到温度和AO反馈值
io_output();//实时更新IO输出状态
//DI数据存入离散量寄存器气泡检测
bub_flag = DisState[0] & 0x04;//获取气泡检测状态
dis_temp =_74hc165_read_byte();
DisState[1] = ~((unsigned char)(dis_temp & 0x00ff)); //第二级74HC165的数据
DisState[0] = ~((unsigned char)((dis_temp >> 8) & 0x00ff));//第一级74HC165的数据
if(bub_flag != (DisState[0] & 0x40))
{
HoldReg[2] ++;
if(HoldReg[2] > 65500)
HoldReg[2] = 65500;
}
if(it_50ms_falg == 1)
{
if(flow_flag == 1)
{
read_mf4700_flow();
flow1 = usart6_rx_buf[3] * 0xFFFFFF + usart6_rx_buf[4] * 0xFFFF + usart6_rx_buf[5] * 0xFF + usart6_rx_buf[6];
}
else if(flow_flag == 2)
{
read_mf5000_flow();
flow2 = usart6_rx_buf[3] * 0xFFFFFF + usart6_rx_buf[4] * 0xFFFF + usart6_rx_buf[5] * 0xFF + usart6_rx_buf[6];
}
else
{
read_mf5000_flow();
flow3 = usart6_rx_buf[3] * 0xFFFFFF + usart6_rx_buf[4] * 0xFFFF + usart6_rx_buf[5] * 0xFF + usart6_rx_buf[6];
}
it_50ms_falg = 0;
}
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
step_cnt = 0;
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_SPI3_Init();
MX_TIM7_Init();
MX_USART3_UART_Init();
MX_ADC1_Init();
MX_SPI1_Init();
MX_USART6_UART_Init();
MX_SPI2_Init();
MX_USART1_UART_Init();
MX_USART2_UART_Init();
MX_TIM4_Init();
MX_TIM3_Init();
/* USER CODE BEGIN 2 */
LL_TIM_EnableCounter(TIM3); //使能计数
LL_TIM_EnableIT_UPDATE(TIM3); //使能更新中断
LL_TIM_EnableAllOutputs(TIM3);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
if(it_1000ms_falg == 1)
{
switch(step_cnt)
{
case 0 :
{
LL_GPIO_ResetOutputPin(SENSOR_SELECT_GPIO_Port,SENSOR_SELECT_Pin);//压力传感器板选择
SetCS();//拉高压力传感器所有片选
usart6_send(get_mf4700_addr,8);
it_1000ms_falg = 0;
step_cnt++;
}
break;
case 1 :
{
if(usart6_rx_buf[0] == 0x01 && usart6_rx_buf[4] == 0x01)
{
flow_flag = 1;
}
else
{
usart6_send(get_mf5000_addr,8);
}
step_cnt++;
it_1000ms_falg = 0;
}
break;
case 2 :
{
if(usart6_rx_buf[0] == 0x02 && usart6_rx_buf[4] == 0x02)
{
flow_flag = 2;
}
else
{
usart6_send(get_mf5000_addr,8);
}
sys_init();//硬件初始化
it_1000ms_falg = 0;
step_cnt++;
}
break;
case 3 :
{
sys_task();//系统任务流程
}
break;
}
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
LL_FLASH_SetLatency(LL_FLASH_LATENCY_5);
while(LL_FLASH_GetLatency()!= LL_FLASH_LATENCY_5)
{
}
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1);
LL_RCC_HSE_Enable();
/* Wait till HSE is ready */
while(LL_RCC_HSE_IsReady() != 1)
{
}
LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSE, LL_RCC_PLLM_DIV_4, 168, LL_RCC_PLLP_DIV_2);
LL_RCC_PLL_Enable();
/* Wait till PLL is ready */
while(LL_RCC_PLL_IsReady() != 1)
{
}
while (LL_PWR_IsActiveFlag_VOS() == 0)
{
}
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_4);
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_2);
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL);
/* Wait till System clock is ready */
while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL)
{
}
LL_SetSystemCoreClock(168000000);
/* Update the time base */
if (HAL_InitTick (TICK_INT_PRIORITY) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
static uint16_t g_fac_ms = 0; // ms延时倍乘数,在os下,代表每个节拍的ms数
static uint32_t g_fac_us = 0; /* us延时倍乘数 */
void SysTick_Init(void)
{
NVIC_SetPriority(SysTick_IRQn, 3);
LL_SYSTICK_EnableIT();
}
/**
* @brief
* @param sysclk: , CPU频率(rcc_c_ck)
* @retval
*/
void delay_init(uint16_t sysclk)
{
#if SYS_SUPPORT_OS /* 如果需要支持OS */
uint32_t reload;
#endif
SysTick_Init();
LL_SetSystemCoreClock(LL_SYSTICK_CLKSOURCE_HCLK); /* SYSTICK使用内核时钟源,同CPU同频率 */
g_fac_us = sysclk; /* 不论是否使用OS,g_fac_us都需要使用 */
g_fac_ms = g_fac_ms;
#if SYS_SUPPORT_OS /* 如果需要支持OS. */
reload = sysclk; /* 每秒钟的计数次数 单位为M */
reload *= 1000000 / configTICK_RATE_HZ; /* 根据delay_ostickspersec设定溢出时间,reload为24位
* ,:16777216,168M下,0.099s左右
*/
g_fac_ms = 1000 / configTICK_RATE_HZ; // 代表OS可以延时的最少单位
SysTick->CTRL |= SysTick_CTRL_TICKINT_Msk; /* 开启SYSTICK中断 */
SysTick->LOAD = reload; /* 每1/delay_ostickspersec秒中断一次 */
SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk; /* 开启SYSTICK */
#endif
}
/**
* @brief nus
* @param nus: us数.
* @note : nus的值,34952us(2^24 / g_fac_us @g_fac_us = 168)
* @retval
*/
void delay_us(uint32_t nus)
{
uint32_t ticks;
uint32_t told, tnow, tcnt = 0;
uint32_t reload = SysTick->LOAD; /* LOAD的值 */
ticks = nus * g_fac_us; /* 需要的节拍数 */
told = SysTick->VAL; /* 刚进入时的计数器值 */
while (1)
{
tnow = SysTick->VAL;
if (tnow != told)
{
if (tnow < told)
{
tcnt += told - tnow; /* 这里注意一下SYSTICK是一个递减的计数器就可以了 */
}
else
{
tcnt += reload - tnow + told;
}
told = tnow;
if (tcnt >= ticks)
{
__NOP();
break; /* 时间超过/等于要延迟的时间,则退出 */
}
}
}
}
/**
* @brief nms
* @param nms: ms数 (0< nms <= 65535)
* @retval
*/
void delay_ms(uint16_t nms)
{
uint32_t repeat = nms / 30; /* 这里用30,是考虑到可能有超频应用 */
uint32_t remain = nms % 30;
while (repeat)
{
delay_us(30 * 1000); /* 利用delay_us 实现 1000ms 延时 */
repeat--;
}
if (remain)
{
delay_us(remain * 1000); /* 利用delay_us, 把尾数延时(remain ms)给做了 */
}
}
/**
* @brief
* @param {uint32_t} ticks
* @return {*}
* @note: 使HAL_Delay或rt_delay
*/
void delay_tick(uint32_t ticks)
{
while (ticks--)
{
__NOP();
}
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

257
Core/Src/spi.c Normal file
View File

@ -0,0 +1,257 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file spi.c
* @brief This file provides code for the configuration
* of the SPI instances.
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "spi.h"
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
SPI_HandleTypeDef hspi1;
SPI_HandleTypeDef hspi3;
/* SPI1 init function */
void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/* SPI2 init function */
void MX_SPI2_Init(void)
{
/* USER CODE BEGIN SPI2_Init 0 */
/* USER CODE END SPI2_Init 0 */
LL_SPI_InitTypeDef SPI_InitStruct = {0};
LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
/* Peripheral clock enable */
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_SPI2);
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOB);
/**SPI2 GPIO Configuration
PB12 ------> SPI2_NSS
PB13 ------> SPI2_SCK
PB14 ------> SPI2_MISO
PB15 ------> SPI2_MOSI
*/
GPIO_InitStruct.Pin = LL_GPIO_PIN_12|LL_GPIO_PIN_13|LL_GPIO_PIN_14|LL_GPIO_PIN_15;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
GPIO_InitStruct.Alternate = LL_GPIO_AF_5;
LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN SPI2_Init 1 */
/* USER CODE END SPI2_Init 1 */
SPI_InitStruct.TransferDirection = LL_SPI_FULL_DUPLEX;
SPI_InitStruct.Mode = LL_SPI_MODE_MASTER;
SPI_InitStruct.DataWidth = LL_SPI_DATAWIDTH_8BIT;
SPI_InitStruct.ClockPolarity = LL_SPI_POLARITY_LOW;
SPI_InitStruct.ClockPhase = LL_SPI_PHASE_1EDGE;
SPI_InitStruct.NSS = LL_SPI_NSS_HARD_OUTPUT;
SPI_InitStruct.BaudRate = LL_SPI_BAUDRATEPRESCALER_DIV2;
SPI_InitStruct.BitOrder = LL_SPI_MSB_FIRST;
SPI_InitStruct.CRCCalculation = LL_SPI_CRCCALCULATION_DISABLE;
SPI_InitStruct.CRCPoly = 10;
LL_SPI_Init(SPI2, &SPI_InitStruct);
LL_SPI_SetStandard(SPI2, LL_SPI_PROTOCOL_MOTOROLA);
/* USER CODE BEGIN SPI2_Init 2 */
/* USER CODE END SPI2_Init 2 */
}
/* SPI3 init function */
void MX_SPI3_Init(void)
{
/* USER CODE BEGIN SPI3_Init 0 */
/* USER CODE END SPI3_Init 0 */
/* USER CODE BEGIN SPI3_Init 1 */
/* USER CODE END SPI3_Init 1 */
hspi3.Instance = SPI3;
hspi3.Init.Mode = SPI_MODE_MASTER;
hspi3.Init.Direction = SPI_DIRECTION_2LINES;
hspi3.Init.DataSize = SPI_DATASIZE_8BIT;
hspi3.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi3.Init.CLKPhase = SPI_PHASE_2EDGE;
hspi3.Init.NSS = SPI_NSS_HARD_OUTPUT;
hspi3.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
hspi3.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi3.Init.TIMode = SPI_TIMODE_DISABLE;
hspi3.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi3.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI3_Init 2 */
/* USER CODE END SPI3_Init 2 */
}
void HAL_SPI_MspInit(SPI_HandleTypeDef* spiHandle)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(spiHandle->Instance==SPI1)
{
/* USER CODE BEGIN SPI1_MspInit 0 */
/* USER CODE END SPI1_MspInit 0 */
/* SPI1 clock enable */
__HAL_RCC_SPI1_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**SPI1 GPIO Configuration
PA5 ------> SPI1_SCK
PA6 ------> SPI1_MISO
PA7 ------> SPI1_MOSI
*/
GPIO_InitStruct.Pin = GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF5_SPI1;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* USER CODE BEGIN SPI1_MspInit 1 */
/* USER CODE END SPI1_MspInit 1 */
}
else if(spiHandle->Instance==SPI3)
{
/* USER CODE BEGIN SPI3_MspInit 0 */
/* USER CODE END SPI3_MspInit 0 */
/* SPI3 clock enable */
__HAL_RCC_SPI3_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
/**SPI3 GPIO Configuration
PA15 ------> SPI3_NSS
PC10 ------> SPI3_SCK
PC11 ------> SPI3_MISO
PC12 ------> SPI3_MOSI
*/
GPIO_InitStruct.Pin = GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF6_SPI3;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF6_SPI3;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/* USER CODE BEGIN SPI3_MspInit 1 */
/* USER CODE END SPI3_MspInit 1 */
}
}
void HAL_SPI_MspDeInit(SPI_HandleTypeDef* spiHandle)
{
if(spiHandle->Instance==SPI1)
{
/* USER CODE BEGIN SPI1_MspDeInit 0 */
/* USER CODE END SPI1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_SPI1_CLK_DISABLE();
/**SPI1 GPIO Configuration
PA5 ------> SPI1_SCK
PA6 ------> SPI1_MISO
PA7 ------> SPI1_MOSI
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7);
/* USER CODE BEGIN SPI1_MspDeInit 1 */
/* USER CODE END SPI1_MspDeInit 1 */
}
else if(spiHandle->Instance==SPI3)
{
/* USER CODE BEGIN SPI3_MspDeInit 0 */
/* USER CODE END SPI3_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_SPI3_CLK_DISABLE();
/**SPI3 GPIO Configuration
PA15 ------> SPI3_NSS
PC10 ------> SPI3_SCK
PC11 ------> SPI3_MISO
PC12 ------> SPI3_MOSI
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_15);
HAL_GPIO_DeInit(GPIOC, GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12);
/* USER CODE BEGIN SPI3_MspDeInit 1 */
/* USER CODE END SPI3_MspDeInit 1 */
}
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */

View File

@ -0,0 +1,84 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file stm32f4xx_hal_msp.c
* @brief This file provides code for the MSP Initialization
* and de-Initialization codes.
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN TD */
/* USER CODE END TD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN Define */
/* USER CODE END Define */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN Macro */
/* USER CODE END Macro */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* External functions --------------------------------------------------------*/
/* USER CODE BEGIN ExternalFunctions */
/* USER CODE END ExternalFunctions */
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* Initializes the Global MSP.
*/
void HAL_MspInit(void)
{
/* USER CODE BEGIN MspInit 0 */
/* USER CODE END MspInit 0 */
__HAL_RCC_SYSCFG_CLK_ENABLE();
__HAL_RCC_PWR_CLK_ENABLE();
HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_2);
/* System interrupt init*/
/* USER CODE BEGIN MspInit 1 */
/* USER CODE END MspInit 1 */
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */

429
Core/Src/stm32f4xx_it.c Normal file
View File

@ -0,0 +1,429 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file stm32f4xx_it.c
* @brief Interrupt Service Routines.
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32f4xx_it.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN TD */
/* USER CODE END TD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
int it_5ms_falg = 0;
int it_5ms_cnt = 0;
int it_10ms_falg = 0;
int it_10ms_cnt = 0;
int it_50ms_falg = 0;
int it_50ms_cnt = 0;
int it_100ms_falg = 0;
int it_100ms_cnt = 0;
int it_300ms_falg = 0;
int it_300ms_cnt = 0;
int it_500ms_falg = 0;
int it_500ms_cnt = 0;
int it_1000ms_falg = 0;
int it_1000ms_cnt = 0;
/* USER CODE END 0 */
/* External variables --------------------------------------------------------*/
/* USER CODE BEGIN EV */
/* USER CODE END EV */
/******************************************************************************/
/* Cortex-M4 Processor Interruption and Exception Handlers */
/******************************************************************************/
/**
* @brief This function handles Non maskable interrupt.
*/
void NMI_Handler(void)
{
/* USER CODE BEGIN NonMaskableInt_IRQn 0 */
/* USER CODE END NonMaskableInt_IRQn 0 */
/* USER CODE BEGIN NonMaskableInt_IRQn 1 */
while (1)
{
}
/* USER CODE END NonMaskableInt_IRQn 1 */
}
/**
* @brief This function handles Hard fault interrupt.
*/
void HardFault_Handler(void)
{
/* USER CODE BEGIN HardFault_IRQn 0 */
/* USER CODE END HardFault_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_HardFault_IRQn 0 */
/* USER CODE END W1_HardFault_IRQn 0 */
}
}
/**
* @brief This function handles Memory management fault.
*/
void MemManage_Handler(void)
{
/* USER CODE BEGIN MemoryManagement_IRQn 0 */
/* USER CODE END MemoryManagement_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_MemoryManagement_IRQn 0 */
/* USER CODE END W1_MemoryManagement_IRQn 0 */
}
}
/**
* @brief This function handles Pre-fetch fault, memory access fault.
*/
void BusFault_Handler(void)
{
/* USER CODE BEGIN BusFault_IRQn 0 */
/* USER CODE END BusFault_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_BusFault_IRQn 0 */
/* USER CODE END W1_BusFault_IRQn 0 */
}
}
/**
* @brief This function handles Undefined instruction or illegal state.
*/
void UsageFault_Handler(void)
{
/* USER CODE BEGIN UsageFault_IRQn 0 */
/* USER CODE END UsageFault_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_UsageFault_IRQn 0 */
/* USER CODE END W1_UsageFault_IRQn 0 */
}
}
/**
* @brief This function handles System service call via SWI instruction.
*/
void SVC_Handler(void)
{
/* USER CODE BEGIN SVCall_IRQn 0 */
/* USER CODE END SVCall_IRQn 0 */
/* USER CODE BEGIN SVCall_IRQn 1 */
/* USER CODE END SVCall_IRQn 1 */
}
/**
* @brief This function handles Debug monitor.
*/
void DebugMon_Handler(void)
{
/* USER CODE BEGIN DebugMonitor_IRQn 0 */
/* USER CODE END DebugMonitor_IRQn 0 */
/* USER CODE BEGIN DebugMonitor_IRQn 1 */
/* USER CODE END DebugMonitor_IRQn 1 */
}
/**
* @brief This function handles Pendable request for system service.
*/
void PendSV_Handler(void)
{
/* USER CODE BEGIN PendSV_IRQn 0 */
/* USER CODE END PendSV_IRQn 0 */
/* USER CODE BEGIN PendSV_IRQn 1 */
/* USER CODE END PendSV_IRQn 1 */
}
/**
* @brief This function handles System tick timer.
*/
void SysTick_Handler(void)
{
/* USER CODE BEGIN SysTick_IRQn 0 */
/* USER CODE END SysTick_IRQn 0 */
HAL_IncTick();
/* USER CODE BEGIN SysTick_IRQn 1 */
/* USER CODE END SysTick_IRQn 1 */
}
/******************************************************************************/
/* STM32F4xx Peripheral Interrupt Handlers */
/* Add here the Interrupt Handlers for the used peripherals. */
/* For the available peripheral interrupt handler names, */
/* please refer to the startup file (startup_stm32f4xx.s). */
/******************************************************************************/
/**
* @brief This function handles DMA1 stream3 global interrupt.
*/
void DMA1_Stream3_IRQHandler(void)
{
/* USER CODE BEGIN DMA1_Stream3_IRQn 0 */
if(LL_DMA_IsActiveFlag_TC3(DMA1))
{
//清除Stream3 TC中断
LL_DMA_ClearFlag_TC3(DMA1);
//关闭DMA1 Stream3
LL_DMA_DisableStream(DMA1,LL_DMA_STREAM_3);
}
/* USER CODE END DMA1_Stream3_IRQn 0 */
/* USER CODE BEGIN DMA1_Stream3_IRQn 1 */
/* USER CODE END DMA1_Stream3_IRQn 1 */
}
/**
* @brief This function handles DMA1 stream6 global interrupt.
*/
void DMA1_Stream6_IRQHandler(void)
{
/* USER CODE BEGIN DMA1_Stream6_IRQn 0 */
if(LL_DMA_IsActiveFlag_TC6(DMA1))
{
LL_DMA_ClearFlag_TC6(DMA1);//清除TC中断
LL_DMA_DisableStream(DMA1,LL_DMA_STREAM_6); //关闭DMA
}
/* USER CODE END DMA1_Stream6_IRQn 0 */
/* USER CODE BEGIN DMA1_Stream6_IRQn 1 */
/* USER CODE END DMA1_Stream6_IRQn 1 */
}
/**
* @brief This function handles TIM3 global interrupt.
*/
void TIM3_IRQHandler(void)
{
/* USER CODE BEGIN TIM3_IRQn 0 */
if(LL_TIM_IsActiveFlag_UPDATE(TIM3) == SET)
{
it_5ms_cnt++;
if(it_5ms_cnt > 4)
{
it_5ms_falg = 1;
it_5ms_cnt = 0;
}
it_10ms_cnt++;
if(it_10ms_cnt > 9)
{
it_10ms_falg = 1;
it_10ms_cnt = 0;
}
it_50ms_cnt++;
if(it_50ms_cnt > 9)
{
it_50ms_falg = 1;
it_50ms_cnt = 0;
}
it_100ms_cnt++;
if(it_100ms_cnt > 99)
{
it_100ms_falg = 1;
it_100ms_cnt = 0;
}
it_300ms_cnt++;
if(it_300ms_cnt > 299)
{
it_300ms_falg = 1;
it_300ms_cnt = 0;
}
it_500ms_cnt++;
if(it_500ms_cnt > 499)
{
it_500ms_falg = 1;
it_500ms_cnt = 0;
}
it_1000ms_cnt++;
if(it_1000ms_cnt > 999)
{
it_1000ms_falg = 1;
it_1000ms_cnt = 0;
}
LL_TIM_ClearFlag_UPDATE(TIM3);
}
/* USER CODE END TIM3_IRQn 0 */
/* USER CODE BEGIN TIM3_IRQn 1 */
/* USER CODE END TIM3_IRQn 1 */
}
/**
* @brief This function handles USART1 global interrupt.
*/
void USART1_IRQHandler(void)
{
/* USER CODE BEGIN USART1_IRQn 0 */
/* USER CODE END USART1_IRQn 0 */
/* USER CODE BEGIN USART1_IRQn 1 */
/* USER CODE END USART1_IRQn 1 */
}
/**
* @brief This function handles USART2 global interrupt.
*/
void USART2_IRQHandler(void)
{
/* USER CODE BEGIN USART2_IRQn 0 */
laser_rx_cb();
/* USER CODE END USART2_IRQn 0 */
/* USER CODE BEGIN USART2_IRQn 1 */
/* USER CODE END USART2_IRQn 1 */
}
/**
* @brief This function handles USART3 global interrupt.
*/
void USART3_IRQHandler(void)
{
/* USER CODE BEGIN USART3_IRQn 0 */
modbus_callback();
/* USER CODE END USART3_IRQn 0 */
/* USER CODE BEGIN USART3_IRQn 1 */
/* USER CODE END USART3_IRQn 1 */
}
/**
* @brief This function handles TIM7 global interrupt.
*/
void TIM7_IRQHandler(void)
{
/* USER CODE BEGIN TIM7_IRQn 0 */
modbus_tim_callback();
/* USER CODE END TIM7_IRQn 0 */
/* USER CODE BEGIN TIM7_IRQn 1 */
/* USER CODE END TIM7_IRQn 1 */
}
/**
* @brief This function handles DMA2 stream0 global interrupt.
*/
void DMA2_Stream0_IRQHandler(void)
{
/* USER CODE BEGIN DMA2_Stream0_IRQn 0 */
if(LL_DMA_IsActiveFlag_TC0(DMA2))
{
ADC_TC_Flag = 1;
}
/* USER CODE END DMA2_Stream0_IRQn 0 */
/* USER CODE BEGIN DMA2_Stream0_IRQn 1 */
LL_DMA_ClearFlag_TC0(DMA2);
if (LL_DMA_IsActiveFlag_TE0(DMA2) != 0)
{
LL_DMA_ClearFlag_TE0(DMA2);
}
/* USER CODE END DMA2_Stream0_IRQn 1 */
}
/**
* @brief This function handles DMA2 stream1 global interrupt.
*/
void DMA2_Stream1_IRQHandler(void)
{
/* USER CODE BEGIN DMA2_Stream1_IRQn 0 */
/* USER CODE END DMA2_Stream1_IRQn 0 */
/* USER CODE BEGIN DMA2_Stream1_IRQn 1 */
/* USER CODE END DMA2_Stream1_IRQn 1 */
}
/**
* @brief This function handles DMA2 stream6 global interrupt.
*/
void DMA2_Stream6_IRQHandler(void)
{
/* USER CODE BEGIN DMA2_Stream6_IRQn 0 */
/* USER CODE END DMA2_Stream6_IRQn 0 */
/* USER CODE BEGIN DMA2_Stream6_IRQn 1 */
/* USER CODE END DMA2_Stream6_IRQn 1 */
}
/**
* @brief This function handles USART6 global interrupt.
*/
void USART6_IRQHandler(void)
{
/* USER CODE BEGIN USART6_IRQn 0 */
/* USER CODE END USART6_IRQn 0 */
/* USER CODE BEGIN USART6_IRQn 1 */
/* USER CODE END USART6_IRQn 1 */
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */

747
Core/Src/system_stm32f4xx.c Normal file
View File

@ -0,0 +1,747 @@
/**
******************************************************************************
* @file system_stm32f4xx.c
* @author MCD Application Team
* @brief CMSIS Cortex-M4 Device Peripheral Access Layer System Source File.
*
* This file provides two functions and one global variable to be called from
* user application:
* - SystemInit(): This function is called at startup just after reset and
* before branch to main program. This call is made inside
* the "startup_stm32f4xx.s" file.
*
* - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
* by the user application to setup the SysTick
* timer or configure other parameters.
*
* - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
* be called whenever the core clock is changed
* during program execution.
*
*
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/** @addtogroup CMSIS
* @{
*/
/** @addtogroup stm32f4xx_system
* @{
*/
/** @addtogroup STM32F4xx_System_Private_Includes
* @{
*/
#include "stm32f4xx.h"
#if !defined (HSE_VALUE)
#define HSE_VALUE ((uint32_t)25000000) /*!< Default value of the External oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (HSI_VALUE)
#define HSI_VALUE ((uint32_t)16000000) /*!< Value of the Internal oscillator in Hz*/
#endif /* HSI_VALUE */
/**
* @}
*/
/** @addtogroup STM32F4xx_System_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @addtogroup STM32F4xx_System_Private_Defines
* @{
*/
/************************* Miscellaneous Configuration ************************/
/*!< Uncomment the following line if you need to use external SRAM or SDRAM as data memory */
#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx)\
|| defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)\
|| defined(STM32F469xx) || defined(STM32F479xx) || defined(STM32F412Zx) || defined(STM32F412Vx)
/* #define DATA_IN_ExtSRAM */
#endif /* STM32F40xxx || STM32F41xxx || STM32F42xxx || STM32F43xxx || STM32F469xx || STM32F479xx ||\
STM32F412Zx || STM32F412Vx */
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)\
|| defined(STM32F446xx) || defined(STM32F469xx) || defined(STM32F479xx)
/* #define DATA_IN_ExtSDRAM */
#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F446xx || STM32F469xx ||\
STM32F479xx */
/* Note: Following vector table addresses must be defined in line with linker
configuration. */
/*!< Uncomment the following line if you need to relocate the vector table
anywhere in Flash or Sram, else the vector table is kept at the automatic
remap of boot address selected */
/* #define USER_VECT_TAB_ADDRESS */
#if defined(USER_VECT_TAB_ADDRESS)
/*!< Uncomment the following line if you need to relocate your vector Table
in Sram else user remap will be done in Flash. */
/* #define VECT_TAB_SRAM */
#if defined(VECT_TAB_SRAM)
#define VECT_TAB_BASE_ADDRESS SRAM_BASE /*!< Vector Table base address field.
This value must be a multiple of 0x200. */
#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
This value must be a multiple of 0x200. */
#else
#define VECT_TAB_BASE_ADDRESS FLASH_BASE /*!< Vector Table base address field.
This value must be a multiple of 0x200. */
#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
This value must be a multiple of 0x200. */
#endif /* VECT_TAB_SRAM */
#endif /* USER_VECT_TAB_ADDRESS */
/******************************************************************************/
/**
* @}
*/
/** @addtogroup STM32F4xx_System_Private_Macros
* @{
*/
/**
* @}
*/
/** @addtogroup STM32F4xx_System_Private_Variables
* @{
*/
/* This variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetHCLKFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
Note: If you use this function to configure the system clock; then there
is no need to call the 2 first functions listed above, since SystemCoreClock
variable is updated automatically.
*/
uint32_t SystemCoreClock = 16000000;
const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
const uint8_t APBPrescTable[8] = {0, 0, 0, 0, 1, 2, 3, 4};
/**
* @}
*/
/** @addtogroup STM32F4xx_System_Private_FunctionPrototypes
* @{
*/
#if defined (DATA_IN_ExtSRAM) || defined (DATA_IN_ExtSDRAM)
static void SystemInit_ExtMemCtl(void);
#endif /* DATA_IN_ExtSRAM || DATA_IN_ExtSDRAM */
/**
* @}
*/
/** @addtogroup STM32F4xx_System_Private_Functions
* @{
*/
/**
* @brief Setup the microcontroller system
* Initialize the FPU setting, vector table location and External memory
* configuration.
* @param None
* @retval None
*/
void SystemInit(void)
{
/* FPU settings ------------------------------------------------------------*/
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
SCB->CPACR |= ((3UL << 10*2)|(3UL << 11*2)); /* set CP10 and CP11 Full Access */
#endif
#if defined (DATA_IN_ExtSRAM) || defined (DATA_IN_ExtSDRAM)
SystemInit_ExtMemCtl();
#endif /* DATA_IN_ExtSRAM || DATA_IN_ExtSDRAM */
/* Configure the Vector Table location -------------------------------------*/
#if defined(USER_VECT_TAB_ADDRESS)
SCB->VTOR = VECT_TAB_BASE_ADDRESS | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM */
#endif /* USER_VECT_TAB_ADDRESS */
}
/**
* @brief Update SystemCoreClock variable according to Clock Register Values.
* The SystemCoreClock variable contains the core clock (HCLK), it can
* be used by the user application to setup the SysTick timer or configure
* other parameters.
*
* @note Each time the core clock (HCLK) changes, this function must be called
* to update SystemCoreClock variable value. Otherwise, any configuration
* based on this variable will be incorrect.
*
* @note - The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
*
* - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*)
*
* - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**)
*
* - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**)
* or HSI_VALUE(*) multiplied/divided by the PLL factors.
*
* (*) HSI_VALUE is a constant defined in stm32f4xx_hal_conf.h file (default value
* 16 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
*
* (**) HSE_VALUE is a constant defined in stm32f4xx_hal_conf.h file (its value
* depends on the application requirements), user has to ensure that HSE_VALUE
* is same as the real frequency of the crystal used. Otherwise, this function
* may have wrong result.
*
* - The result of this function could be not correct when using fractional
* value for HSE crystal.
*
* @param None
* @retval None
*/
void SystemCoreClockUpdate(void)
{
uint32_t tmp = 0, pllvco = 0, pllp = 2, pllsource = 0, pllm = 2;
/* Get SYSCLK source -------------------------------------------------------*/
tmp = RCC->CFGR & RCC_CFGR_SWS;
switch (tmp)
{
case 0x00: /* HSI used as system clock source */
SystemCoreClock = HSI_VALUE;
break;
case 0x04: /* HSE used as system clock source */
SystemCoreClock = HSE_VALUE;
break;
case 0x08: /* PLL used as system clock source */
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLL_M) * PLL_N
SYSCLK = PLL_VCO / PLL_P
*/
pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) >> 22;
pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM;
if (pllsource != 0)
{
/* HSE used as PLL clock source */
pllvco = (HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6);
}
else
{
/* HSI used as PLL clock source */
pllvco = (HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6);
}
pllp = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >>16) + 1 ) *2;
SystemCoreClock = pllvco/pllp;
break;
default:
SystemCoreClock = HSI_VALUE;
break;
}
/* Compute HCLK frequency --------------------------------------------------*/
/* Get HCLK prescaler */
tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)];
/* HCLK frequency */
SystemCoreClock >>= tmp;
}
#if defined (DATA_IN_ExtSRAM) && defined (DATA_IN_ExtSDRAM)
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)\
|| defined(STM32F469xx) || defined(STM32F479xx)
/**
* @brief Setup the external memory controller.
* Called in startup_stm32f4xx.s before jump to main.
* This function configures the external memories (SRAM/SDRAM)
* This SRAM/SDRAM will be used as program data memory (including heap and stack).
* @param None
* @retval None
*/
void SystemInit_ExtMemCtl(void)
{
__IO uint32_t tmp = 0x00;
register uint32_t tmpreg = 0, timeout = 0xFFFF;
register __IO uint32_t index;
/* Enable GPIOC, GPIOD, GPIOE, GPIOF, GPIOG, GPIOH and GPIOI interface clock */
RCC->AHB1ENR |= 0x000001F8;
/* Delay after an RCC peripheral clock enabling */
tmp = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOCEN);
/* Connect PDx pins to FMC Alternate function */
GPIOD->AFR[0] = 0x00CCC0CC;
GPIOD->AFR[1] = 0xCCCCCCCC;
/* Configure PDx pins in Alternate function mode */
GPIOD->MODER = 0xAAAA0A8A;
/* Configure PDx pins speed to 100 MHz */
GPIOD->OSPEEDR = 0xFFFF0FCF;
/* Configure PDx pins Output type to push-pull */
GPIOD->OTYPER = 0x00000000;
/* No pull-up, pull-down for PDx pins */
GPIOD->PUPDR = 0x00000000;
/* Connect PEx pins to FMC Alternate function */
GPIOE->AFR[0] = 0xC00CC0CC;
GPIOE->AFR[1] = 0xCCCCCCCC;
/* Configure PEx pins in Alternate function mode */
GPIOE->MODER = 0xAAAA828A;
/* Configure PEx pins speed to 100 MHz */
GPIOE->OSPEEDR = 0xFFFFC3CF;
/* Configure PEx pins Output type to push-pull */
GPIOE->OTYPER = 0x00000000;
/* No pull-up, pull-down for PEx pins */
GPIOE->PUPDR = 0x00000000;
/* Connect PFx pins to FMC Alternate function */
GPIOF->AFR[0] = 0xCCCCCCCC;
GPIOF->AFR[1] = 0xCCCCCCCC;
/* Configure PFx pins in Alternate function mode */
GPIOF->MODER = 0xAA800AAA;
/* Configure PFx pins speed to 50 MHz */
GPIOF->OSPEEDR = 0xAA800AAA;
/* Configure PFx pins Output type to push-pull */
GPIOF->OTYPER = 0x00000000;
/* No pull-up, pull-down for PFx pins */
GPIOF->PUPDR = 0x00000000;
/* Connect PGx pins to FMC Alternate function */
GPIOG->AFR[0] = 0xCCCCCCCC;
GPIOG->AFR[1] = 0xCCCCCCCC;
/* Configure PGx pins in Alternate function mode */
GPIOG->MODER = 0xAAAAAAAA;
/* Configure PGx pins speed to 50 MHz */
GPIOG->OSPEEDR = 0xAAAAAAAA;
/* Configure PGx pins Output type to push-pull */
GPIOG->OTYPER = 0x00000000;
/* No pull-up, pull-down for PGx pins */
GPIOG->PUPDR = 0x00000000;
/* Connect PHx pins to FMC Alternate function */
GPIOH->AFR[0] = 0x00C0CC00;
GPIOH->AFR[1] = 0xCCCCCCCC;
/* Configure PHx pins in Alternate function mode */
GPIOH->MODER = 0xAAAA08A0;
/* Configure PHx pins speed to 50 MHz */
GPIOH->OSPEEDR = 0xAAAA08A0;
/* Configure PHx pins Output type to push-pull */
GPIOH->OTYPER = 0x00000000;
/* No pull-up, pull-down for PHx pins */
GPIOH->PUPDR = 0x00000000;
/* Connect PIx pins to FMC Alternate function */
GPIOI->AFR[0] = 0xCCCCCCCC;
GPIOI->AFR[1] = 0x00000CC0;
/* Configure PIx pins in Alternate function mode */
GPIOI->MODER = 0x0028AAAA;
/* Configure PIx pins speed to 50 MHz */
GPIOI->OSPEEDR = 0x0028AAAA;
/* Configure PIx pins Output type to push-pull */
GPIOI->OTYPER = 0x00000000;
/* No pull-up, pull-down for PIx pins */
GPIOI->PUPDR = 0x00000000;
/*-- FMC Configuration -------------------------------------------------------*/
/* Enable the FMC interface clock */
RCC->AHB3ENR |= 0x00000001;
/* Delay after an RCC peripheral clock enabling */
tmp = READ_BIT(RCC->AHB3ENR, RCC_AHB3ENR_FMCEN);
FMC_Bank5_6->SDCR[0] = 0x000019E4;
FMC_Bank5_6->SDTR[0] = 0x01115351;
/* SDRAM initialization sequence */
/* Clock enable command */
FMC_Bank5_6->SDCMR = 0x00000011;
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
while((tmpreg != 0) && (timeout-- > 0))
{
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
}
/* Delay */
for (index = 0; index<1000; index++);
/* PALL command */
FMC_Bank5_6->SDCMR = 0x00000012;
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
timeout = 0xFFFF;
while((tmpreg != 0) && (timeout-- > 0))
{
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
}
/* Auto refresh command */
FMC_Bank5_6->SDCMR = 0x00000073;
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
timeout = 0xFFFF;
while((tmpreg != 0) && (timeout-- > 0))
{
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
}
/* MRD register program */
FMC_Bank5_6->SDCMR = 0x00046014;
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
timeout = 0xFFFF;
while((tmpreg != 0) && (timeout-- > 0))
{
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
}
/* Set refresh count */
tmpreg = FMC_Bank5_6->SDRTR;
FMC_Bank5_6->SDRTR = (tmpreg | (0x0000027C<<1));
/* Disable write protection */
tmpreg = FMC_Bank5_6->SDCR[0];
FMC_Bank5_6->SDCR[0] = (tmpreg & 0xFFFFFDFF);
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)
/* Configure and enable Bank1_SRAM2 */
FMC_Bank1->BTCR[2] = 0x00001011;
FMC_Bank1->BTCR[3] = 0x00000201;
FMC_Bank1E->BWTR[2] = 0x0fffffff;
#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */
#if defined(STM32F469xx) || defined(STM32F479xx)
/* Configure and enable Bank1_SRAM2 */
FMC_Bank1->BTCR[2] = 0x00001091;
FMC_Bank1->BTCR[3] = 0x00110212;
FMC_Bank1E->BWTR[2] = 0x0fffffff;
#endif /* STM32F469xx || STM32F479xx */
(void)(tmp);
}
#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F469xx || STM32F479xx */
#elif defined (DATA_IN_ExtSRAM) || defined (DATA_IN_ExtSDRAM)
/**
* @brief Setup the external memory controller.
* Called in startup_stm32f4xx.s before jump to main.
* This function configures the external memories (SRAM/SDRAM)
* This SRAM/SDRAM will be used as program data memory (including heap and stack).
* @param None
* @retval None
*/
void SystemInit_ExtMemCtl(void)
{
__IO uint32_t tmp = 0x00;
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)\
|| defined(STM32F446xx) || defined(STM32F469xx) || defined(STM32F479xx)
#if defined (DATA_IN_ExtSDRAM)
register uint32_t tmpreg = 0, timeout = 0xFFFF;
register __IO uint32_t index;
#if defined(STM32F446xx)
/* Enable GPIOA, GPIOC, GPIOD, GPIOE, GPIOF, GPIOG interface
clock */
RCC->AHB1ENR |= 0x0000007D;
#else
/* Enable GPIOC, GPIOD, GPIOE, GPIOF, GPIOG, GPIOH and GPIOI interface
clock */
RCC->AHB1ENR |= 0x000001F8;
#endif /* STM32F446xx */
/* Delay after an RCC peripheral clock enabling */
tmp = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIOCEN);
#if defined(STM32F446xx)
/* Connect PAx pins to FMC Alternate function */
GPIOA->AFR[0] |= 0xC0000000;
GPIOA->AFR[1] |= 0x00000000;
/* Configure PDx pins in Alternate function mode */
GPIOA->MODER |= 0x00008000;
/* Configure PDx pins speed to 50 MHz */
GPIOA->OSPEEDR |= 0x00008000;
/* Configure PDx pins Output type to push-pull */
GPIOA->OTYPER |= 0x00000000;
/* No pull-up, pull-down for PDx pins */
GPIOA->PUPDR |= 0x00000000;
/* Connect PCx pins to FMC Alternate function */
GPIOC->AFR[0] |= 0x00CC0000;
GPIOC->AFR[1] |= 0x00000000;
/* Configure PDx pins in Alternate function mode */
GPIOC->MODER |= 0x00000A00;
/* Configure PDx pins speed to 50 MHz */
GPIOC->OSPEEDR |= 0x00000A00;
/* Configure PDx pins Output type to push-pull */
GPIOC->OTYPER |= 0x00000000;
/* No pull-up, pull-down for PDx pins */
GPIOC->PUPDR |= 0x00000000;
#endif /* STM32F446xx */
/* Connect PDx pins to FMC Alternate function */
GPIOD->AFR[0] = 0x000000CC;
GPIOD->AFR[1] = 0xCC000CCC;
/* Configure PDx pins in Alternate function mode */
GPIOD->MODER = 0xA02A000A;
/* Configure PDx pins speed to 50 MHz */
GPIOD->OSPEEDR = 0xA02A000A;
/* Configure PDx pins Output type to push-pull */
GPIOD->OTYPER = 0x00000000;
/* No pull-up, pull-down for PDx pins */
GPIOD->PUPDR = 0x00000000;
/* Connect PEx pins to FMC Alternate function */
GPIOE->AFR[0] = 0xC00000CC;
GPIOE->AFR[1] = 0xCCCCCCCC;
/* Configure PEx pins in Alternate function mode */
GPIOE->MODER = 0xAAAA800A;
/* Configure PEx pins speed to 50 MHz */
GPIOE->OSPEEDR = 0xAAAA800A;
/* Configure PEx pins Output type to push-pull */
GPIOE->OTYPER = 0x00000000;
/* No pull-up, pull-down for PEx pins */
GPIOE->PUPDR = 0x00000000;
/* Connect PFx pins to FMC Alternate function */
GPIOF->AFR[0] = 0xCCCCCCCC;
GPIOF->AFR[1] = 0xCCCCCCCC;
/* Configure PFx pins in Alternate function mode */
GPIOF->MODER = 0xAA800AAA;
/* Configure PFx pins speed to 50 MHz */
GPIOF->OSPEEDR = 0xAA800AAA;
/* Configure PFx pins Output type to push-pull */
GPIOF->OTYPER = 0x00000000;
/* No pull-up, pull-down for PFx pins */
GPIOF->PUPDR = 0x00000000;
/* Connect PGx pins to FMC Alternate function */
GPIOG->AFR[0] = 0xCCCCCCCC;
GPIOG->AFR[1] = 0xCCCCCCCC;
/* Configure PGx pins in Alternate function mode */
GPIOG->MODER = 0xAAAAAAAA;
/* Configure PGx pins speed to 50 MHz */
GPIOG->OSPEEDR = 0xAAAAAAAA;
/* Configure PGx pins Output type to push-pull */
GPIOG->OTYPER = 0x00000000;
/* No pull-up, pull-down for PGx pins */
GPIOG->PUPDR = 0x00000000;
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)\
|| defined(STM32F469xx) || defined(STM32F479xx)
/* Connect PHx pins to FMC Alternate function */
GPIOH->AFR[0] = 0x00C0CC00;
GPIOH->AFR[1] = 0xCCCCCCCC;
/* Configure PHx pins in Alternate function mode */
GPIOH->MODER = 0xAAAA08A0;
/* Configure PHx pins speed to 50 MHz */
GPIOH->OSPEEDR = 0xAAAA08A0;
/* Configure PHx pins Output type to push-pull */
GPIOH->OTYPER = 0x00000000;
/* No pull-up, pull-down for PHx pins */
GPIOH->PUPDR = 0x00000000;
/* Connect PIx pins to FMC Alternate function */
GPIOI->AFR[0] = 0xCCCCCCCC;
GPIOI->AFR[1] = 0x00000CC0;
/* Configure PIx pins in Alternate function mode */
GPIOI->MODER = 0x0028AAAA;
/* Configure PIx pins speed to 50 MHz */
GPIOI->OSPEEDR = 0x0028AAAA;
/* Configure PIx pins Output type to push-pull */
GPIOI->OTYPER = 0x00000000;
/* No pull-up, pull-down for PIx pins */
GPIOI->PUPDR = 0x00000000;
#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F469xx || STM32F479xx */
/*-- FMC Configuration -------------------------------------------------------*/
/* Enable the FMC interface clock */
RCC->AHB3ENR |= 0x00000001;
/* Delay after an RCC peripheral clock enabling */
tmp = READ_BIT(RCC->AHB3ENR, RCC_AHB3ENR_FMCEN);
/* Configure and enable SDRAM bank1 */
#if defined(STM32F446xx)
FMC_Bank5_6->SDCR[0] = 0x00001954;
#else
FMC_Bank5_6->SDCR[0] = 0x000019E4;
#endif /* STM32F446xx */
FMC_Bank5_6->SDTR[0] = 0x01115351;
/* SDRAM initialization sequence */
/* Clock enable command */
FMC_Bank5_6->SDCMR = 0x00000011;
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
while((tmpreg != 0) && (timeout-- > 0))
{
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
}
/* Delay */
for (index = 0; index<1000; index++);
/* PALL command */
FMC_Bank5_6->SDCMR = 0x00000012;
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
timeout = 0xFFFF;
while((tmpreg != 0) && (timeout-- > 0))
{
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
}
/* Auto refresh command */
#if defined(STM32F446xx)
FMC_Bank5_6->SDCMR = 0x000000F3;
#else
FMC_Bank5_6->SDCMR = 0x00000073;
#endif /* STM32F446xx */
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
timeout = 0xFFFF;
while((tmpreg != 0) && (timeout-- > 0))
{
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
}
/* MRD register program */
#if defined(STM32F446xx)
FMC_Bank5_6->SDCMR = 0x00044014;
#else
FMC_Bank5_6->SDCMR = 0x00046014;
#endif /* STM32F446xx */
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
timeout = 0xFFFF;
while((tmpreg != 0) && (timeout-- > 0))
{
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
}
/* Set refresh count */
tmpreg = FMC_Bank5_6->SDRTR;
#if defined(STM32F446xx)
FMC_Bank5_6->SDRTR = (tmpreg | (0x0000050C<<1));
#else
FMC_Bank5_6->SDRTR = (tmpreg | (0x0000027C<<1));
#endif /* STM32F446xx */
/* Disable write protection */
tmpreg = FMC_Bank5_6->SDCR[0];
FMC_Bank5_6->SDCR[0] = (tmpreg & 0xFFFFFDFF);
#endif /* DATA_IN_ExtSDRAM */
#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F446xx || STM32F469xx || STM32F479xx */
#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx)\
|| defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)\
|| defined(STM32F469xx) || defined(STM32F479xx) || defined(STM32F412Zx) || defined(STM32F412Vx)
#if defined(DATA_IN_ExtSRAM)
/*-- GPIOs Configuration -----------------------------------------------------*/
/* Enable GPIOD, GPIOE, GPIOF and GPIOG interface clock */
RCC->AHB1ENR |= 0x00000078;
/* Delay after an RCC peripheral clock enabling */
tmp = READ_BIT(RCC->AHB1ENR, RCC_AHB1ENR_GPIODEN);
/* Connect PDx pins to FMC Alternate function */
GPIOD->AFR[0] = 0x00CCC0CC;
GPIOD->AFR[1] = 0xCCCCCCCC;
/* Configure PDx pins in Alternate function mode */
GPIOD->MODER = 0xAAAA0A8A;
/* Configure PDx pins speed to 100 MHz */
GPIOD->OSPEEDR = 0xFFFF0FCF;
/* Configure PDx pins Output type to push-pull */
GPIOD->OTYPER = 0x00000000;
/* No pull-up, pull-down for PDx pins */
GPIOD->PUPDR = 0x00000000;
/* Connect PEx pins to FMC Alternate function */
GPIOE->AFR[0] = 0xC00CC0CC;
GPIOE->AFR[1] = 0xCCCCCCCC;
/* Configure PEx pins in Alternate function mode */
GPIOE->MODER = 0xAAAA828A;
/* Configure PEx pins speed to 100 MHz */
GPIOE->OSPEEDR = 0xFFFFC3CF;
/* Configure PEx pins Output type to push-pull */
GPIOE->OTYPER = 0x00000000;
/* No pull-up, pull-down for PEx pins */
GPIOE->PUPDR = 0x00000000;
/* Connect PFx pins to FMC Alternate function */
GPIOF->AFR[0] = 0x00CCCCCC;
GPIOF->AFR[1] = 0xCCCC0000;
/* Configure PFx pins in Alternate function mode */
GPIOF->MODER = 0xAA000AAA;
/* Configure PFx pins speed to 100 MHz */
GPIOF->OSPEEDR = 0xFF000FFF;
/* Configure PFx pins Output type to push-pull */
GPIOF->OTYPER = 0x00000000;
/* No pull-up, pull-down for PFx pins */
GPIOF->PUPDR = 0x00000000;
/* Connect PGx pins to FMC Alternate function */
GPIOG->AFR[0] = 0x00CCCCCC;
GPIOG->AFR[1] = 0x000000C0;
/* Configure PGx pins in Alternate function mode */
GPIOG->MODER = 0x00085AAA;
/* Configure PGx pins speed to 100 MHz */
GPIOG->OSPEEDR = 0x000CAFFF;
/* Configure PGx pins Output type to push-pull */
GPIOG->OTYPER = 0x00000000;
/* No pull-up, pull-down for PGx pins */
GPIOG->PUPDR = 0x00000000;
/*-- FMC/FSMC Configuration --------------------------------------------------*/
/* Enable the FMC/FSMC interface clock */
RCC->AHB3ENR |= 0x00000001;
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)
/* Delay after an RCC peripheral clock enabling */
tmp = READ_BIT(RCC->AHB3ENR, RCC_AHB3ENR_FMCEN);
/* Configure and enable Bank1_SRAM2 */
FMC_Bank1->BTCR[2] = 0x00001011;
FMC_Bank1->BTCR[3] = 0x00000201;
FMC_Bank1E->BWTR[2] = 0x0fffffff;
#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */
#if defined(STM32F469xx) || defined(STM32F479xx)
/* Delay after an RCC peripheral clock enabling */
tmp = READ_BIT(RCC->AHB3ENR, RCC_AHB3ENR_FMCEN);
/* Configure and enable Bank1_SRAM2 */
FMC_Bank1->BTCR[2] = 0x00001091;
FMC_Bank1->BTCR[3] = 0x00110212;
FMC_Bank1E->BWTR[2] = 0x0fffffff;
#endif /* STM32F469xx || STM32F479xx */
#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx)|| defined(STM32F417xx)\
|| defined(STM32F412Zx) || defined(STM32F412Vx)
/* Delay after an RCC peripheral clock enabling */
tmp = READ_BIT(RCC->AHB3ENR, RCC_AHB3ENR_FSMCEN);
/* Configure and enable Bank1_SRAM2 */
FSMC_Bank1->BTCR[2] = 0x00001011;
FSMC_Bank1->BTCR[3] = 0x00000201;
FSMC_Bank1E->BWTR[2] = 0x0FFFFFFF;
#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx || STM32F412Zx || STM32F412Vx */
#endif /* DATA_IN_ExtSRAM */
#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx || STM32F427xx || STM32F437xx ||\
STM32F429xx || STM32F439xx || STM32F469xx || STM32F479xx || STM32F412Zx || STM32F412Vx */
(void)(tmp);
}
#endif /* DATA_IN_ExtSRAM && DATA_IN_ExtSDRAM */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/

186
Core/Src/tim.c Normal file
View File

@ -0,0 +1,186 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file tim.c
* @brief This file provides code for the configuration
* of the TIM instances.
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "tim.h"
/* USER CODE BEGIN 0 */
#include "usart.h"
/* USER CODE END 0 */
/* TIM3 init function */
void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
LL_TIM_InitTypeDef TIM_InitStruct = {0};
/* Peripheral clock enable */
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM3);
/* TIM3 interrupt Init */
NVIC_SetPriority(TIM3_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
NVIC_EnableIRQ(TIM3_IRQn);
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
TIM_InitStruct.Prescaler = 83;
TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
TIM_InitStruct.Autoreload = 999;
TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
LL_TIM_Init(TIM3, &TIM_InitStruct);
LL_TIM_EnableARRPreload(TIM3);
LL_TIM_SetClockSource(TIM3, LL_TIM_CLOCKSOURCE_INTERNAL);
LL_TIM_SetTriggerOutput(TIM3, LL_TIM_TRGO_RESET);
LL_TIM_DisableMasterSlaveMode(TIM3);
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
}
/* TIM4 init function */
void MX_TIM4_Init(void)
{
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE END TIM4_Init 0 */
LL_TIM_InitTypeDef TIM_InitStruct = {0};
LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
/* Peripheral clock enable */
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM4);
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOB);
/**TIM4 GPIO Configuration
PB6 ------> TIM4_CH1
PB7 ------> TIM4_CH2
PB8 ------> TIM4_CH3
*/
GPIO_InitStruct.Pin = ENCODER_A_Pin|ENCODER_B_Pin|LL_GPIO_PIN_8;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
GPIO_InitStruct.Alternate = LL_GPIO_AF_2;
LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
TIM_InitStruct.Prescaler = 0;
TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
TIM_InitStruct.Autoreload = 65535;
TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
LL_TIM_Init(TIM4, &TIM_InitStruct);
LL_TIM_DisableARRPreload(TIM4);
LL_TIM_SetEncoderMode(TIM4, LL_TIM_ENCODERMODE_X4_TI12);
LL_TIM_IC_SetActiveInput(TIM4, LL_TIM_CHANNEL_CH1, LL_TIM_ACTIVEINPUT_DIRECTTI);
LL_TIM_IC_SetPrescaler(TIM4, LL_TIM_CHANNEL_CH1, LL_TIM_ICPSC_DIV1);
LL_TIM_IC_SetFilter(TIM4, LL_TIM_CHANNEL_CH1, LL_TIM_IC_FILTER_FDIV1);
LL_TIM_IC_SetPolarity(TIM4, LL_TIM_CHANNEL_CH1, LL_TIM_IC_POLARITY_RISING);
LL_TIM_IC_SetActiveInput(TIM4, LL_TIM_CHANNEL_CH2, LL_TIM_ACTIVEINPUT_DIRECTTI);
LL_TIM_IC_SetPrescaler(TIM4, LL_TIM_CHANNEL_CH2, LL_TIM_ICPSC_DIV1);
LL_TIM_IC_SetFilter(TIM4, LL_TIM_CHANNEL_CH2, LL_TIM_IC_FILTER_FDIV1);
LL_TIM_IC_SetPolarity(TIM4, LL_TIM_CHANNEL_CH2, LL_TIM_IC_POLARITY_RISING);
LL_TIM_SetTriggerOutput(TIM4, LL_TIM_TRGO_RESET);
LL_TIM_DisableMasterSlaveMode(TIM4);
LL_TIM_IC_SetActiveInput(TIM4, LL_TIM_CHANNEL_CH3, LL_TIM_ACTIVEINPUT_DIRECTTI);
LL_TIM_IC_SetPrescaler(TIM4, LL_TIM_CHANNEL_CH3, LL_TIM_ICPSC_DIV1);
LL_TIM_IC_SetFilter(TIM4, LL_TIM_CHANNEL_CH3, LL_TIM_IC_FILTER_FDIV1);
LL_TIM_IC_SetPolarity(TIM4, LL_TIM_CHANNEL_CH3, LL_TIM_IC_POLARITY_RISING);
/* USER CODE BEGIN TIM4_Init 2 */
/* USER CODE END TIM4_Init 2 */
}
/* TIM7 init function */
void MX_TIM7_Init(void)
{
/* USER CODE BEGIN TIM7_Init 0 */
/* USER CODE END TIM7_Init 0 */
LL_TIM_InitTypeDef TIM_InitStruct = {0};
/* Peripheral clock enable */
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM7);
/* TIM7 interrupt Init */
NVIC_SetPriority(TIM7_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),2, 1));
NVIC_EnableIRQ(TIM7_IRQn);
/* USER CODE BEGIN TIM7_Init 1 */
/* USER CODE END TIM7_Init 1 */
TIM_InitStruct.Prescaler = 16799;
TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
TIM_InitStruct.Autoreload = 39;
LL_TIM_Init(TIM7, &TIM_InitStruct);
LL_TIM_EnableARRPreload(TIM7);
LL_TIM_SetTriggerOutput(TIM7, LL_TIM_TRGO_RESET);
LL_TIM_DisableMasterSlaveMode(TIM7);
/* USER CODE BEGIN TIM7_Init 2 */
/* USER CODE END TIM7_Init 2 */
}
/* USER CODE BEGIN 1 */
void encode_init(void)
{
LL_TIM_CC_EnableChannel(TIM4,LL_TIM_CHANNEL_CH1);
LL_TIM_CC_EnableChannel(TIM4,LL_TIM_CHANNEL_CH2);
LL_TIM_EnableCounter(TIM4);
}
/*****************************重写时间回调函数**********************/
void modbus_tim_init(void)
{
LL_TIM_EnableIT_UPDATE(TIM7);//TIM6更新使能
LL_TIM_EnableCounter(TIM7);//TIM6计数使能
}
void modbus_tim_callback(void)
{
LL_TIM_ClearFlag_UPDATE(TIM7); //产生中断证明超过4ms没有接收到数据了一帧接收完成
LL_TIM_DisableCounter(TIM7); //中断之后停止定时器,开启在下一次接收到数据开始
usart3.rx_size = usart3.rx_buf_cnt; //将接收到数据数量赋值
usart3.rx_buf_cnt = 0; //清零
usart3.rx_flag = 1; //接收完成置1
//485通信
if(usart3.rx_flag == 1) //如果一帧数据接收完成其在tim7的回调函数置位
{
Modbus_Process();
usart3.rx_flag=0; //接收完成标志位清零
}
}
/* USER CODE END 1 */

477
Core/Src/usart.c Normal file
View File

@ -0,0 +1,477 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file usart.c
* @brief This file provides code for the configuration
* of the USART instances.
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "usart.h"
/* USER CODE BEGIN 0 */
#include "string.h"
#include "tim.h"
#define USART3_RXSIZE 1024 //一帧接收数据的最大值
#define USART3_TXSIZE 1024 //一帧发送数据的最大值
uint8_t usart3_rx_buf[USART3_RXSIZE]; //发送数据缓冲数组
uint8_t usart3_tx_buf[USART3_TXSIZE]; //接收数据缓冲数据
uint8_t usart6_rx_buf[64]; //发送数据缓冲数组
uint8_t usart6_tx_buf[64]; //接收数据缓冲数据
int usart6_cnt = 0;
UART_BUF usart3; //串口结构体实体
uint8_t RxBuffer; //接收数据中间变量
uint8_t mfc_ins_buf[8] = {0x01,0x03,0x00,0x10,0x00,0x02,0xC5,0xCE};//读取流量计瞬时流量命令
uint8_t mfc_cum_buf[8] = {0x01,0x03,0x00,0x1A,0x00,0x02,0xE5,0xCC};//读取流量计累积流量命令
uint8_t mfc_data_buf[8];//流量计返回数组
/* USER CODE END 0 */
/* USART1 init function */
void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
LL_USART_InitTypeDef USART_InitStruct = {0};
LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
/* Peripheral clock enable */
LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_USART1);
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOA);
/**USART1 GPIO Configuration
PA9 ------> USART1_TX
PA10 ------> USART1_RX
*/
GPIO_InitStruct.Pin = LL_GPIO_PIN_9;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
GPIO_InitStruct.Alternate = LL_GPIO_AF_7;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LL_GPIO_PIN_10;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
GPIO_InitStruct.Alternate = LL_GPIO_AF_7;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* USART1 interrupt Init */
NVIC_SetPriority(USART1_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
NVIC_EnableIRQ(USART1_IRQn);
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
USART_InitStruct.BaudRate = 115200;
USART_InitStruct.DataWidth = LL_USART_DATAWIDTH_8B;
USART_InitStruct.StopBits = LL_USART_STOPBITS_1;
USART_InitStruct.Parity = LL_USART_PARITY_NONE;
USART_InitStruct.TransferDirection = LL_USART_DIRECTION_TX_RX;
USART_InitStruct.HardwareFlowControl = LL_USART_HWCONTROL_NONE;
USART_InitStruct.OverSampling = LL_USART_OVERSAMPLING_16;
LL_USART_Init(USART1, &USART_InitStruct);
LL_USART_ConfigAsyncMode(USART1);
LL_USART_Enable(USART1);
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/* USART2 init function */
void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
LL_USART_InitTypeDef USART_InitStruct = {0};
LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
/* Peripheral clock enable */
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_USART2);
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOD);
/**USART2 GPIO Configuration
PD5 ------> USART2_TX
PD6 ------> USART2_RX
*/
GPIO_InitStruct.Pin = LL_GPIO_PIN_5;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
GPIO_InitStruct.Alternate = LL_GPIO_AF_7;
LL_GPIO_Init(GPIOD, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LL_GPIO_PIN_6;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
GPIO_InitStruct.Alternate = LL_GPIO_AF_7;
LL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/* USART2 DMA Init */
/* USART2_TX Init */
LL_DMA_SetChannelSelection(DMA1, LL_DMA_STREAM_6, LL_DMA_CHANNEL_4);
LL_DMA_SetDataTransferDirection(DMA1, LL_DMA_STREAM_6, LL_DMA_DIRECTION_MEMORY_TO_PERIPH);
LL_DMA_SetStreamPriorityLevel(DMA1, LL_DMA_STREAM_6, LL_DMA_PRIORITY_LOW);
LL_DMA_SetMode(DMA1, LL_DMA_STREAM_6, LL_DMA_MODE_CIRCULAR);
LL_DMA_SetPeriphIncMode(DMA1, LL_DMA_STREAM_6, LL_DMA_PERIPH_NOINCREMENT);
LL_DMA_SetMemoryIncMode(DMA1, LL_DMA_STREAM_6, LL_DMA_MEMORY_INCREMENT);
LL_DMA_SetPeriphSize(DMA1, LL_DMA_STREAM_6, LL_DMA_PDATAALIGN_BYTE);
LL_DMA_SetMemorySize(DMA1, LL_DMA_STREAM_6, LL_DMA_MDATAALIGN_BYTE);
LL_DMA_DisableFifoMode(DMA1, LL_DMA_STREAM_6);
/* USART2 interrupt Init */
NVIC_SetPriority(USART2_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
NVIC_EnableIRQ(USART2_IRQn);
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
USART_InitStruct.BaudRate = 38400;
USART_InitStruct.DataWidth = LL_USART_DATAWIDTH_8B;
USART_InitStruct.StopBits = LL_USART_STOPBITS_1;
USART_InitStruct.Parity = LL_USART_PARITY_NONE;
USART_InitStruct.TransferDirection = LL_USART_DIRECTION_TX_RX;
USART_InitStruct.HardwareFlowControl = LL_USART_HWCONTROL_NONE;
USART_InitStruct.OverSampling = LL_USART_OVERSAMPLING_16;
LL_USART_Init(USART2, &USART_InitStruct);
LL_USART_ConfigAsyncMode(USART2);
LL_USART_Enable(USART2);
/* USER CODE BEGIN USART2_Init 2 */
uart2_init();
/* USER CODE END USART2_Init 2 */
}
/* USART3 init function */
void MX_USART3_UART_Init(void)
{
/* USER CODE BEGIN USART3_Init 0 */
/* USER CODE END USART3_Init 0 */
LL_USART_InitTypeDef USART_InitStruct = {0};
LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
/* Peripheral clock enable */
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_USART3);
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOD);
/**USART3 GPIO Configuration
PD8 ------> USART3_TX
PD9 ------> USART3_RX
*/
GPIO_InitStruct.Pin = LL_GPIO_PIN_8;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
GPIO_InitStruct.Alternate = LL_GPIO_AF_7;
LL_GPIO_Init(GPIOD, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LL_GPIO_PIN_9;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
GPIO_InitStruct.Alternate = LL_GPIO_AF_7;
LL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/* USART3 DMA Init */
/* USART3_TX Init */
LL_DMA_SetChannelSelection(DMA1, LL_DMA_STREAM_3, LL_DMA_CHANNEL_4);
LL_DMA_SetDataTransferDirection(DMA1, LL_DMA_STREAM_3, LL_DMA_DIRECTION_MEMORY_TO_PERIPH);
LL_DMA_SetStreamPriorityLevel(DMA1, LL_DMA_STREAM_3, LL_DMA_PRIORITY_LOW);
LL_DMA_SetMode(DMA1, LL_DMA_STREAM_3, LL_DMA_MODE_NORMAL);
LL_DMA_SetPeriphIncMode(DMA1, LL_DMA_STREAM_3, LL_DMA_PERIPH_NOINCREMENT);
LL_DMA_SetMemoryIncMode(DMA1, LL_DMA_STREAM_3, LL_DMA_MEMORY_INCREMENT);
LL_DMA_SetPeriphSize(DMA1, LL_DMA_STREAM_3, LL_DMA_PDATAALIGN_BYTE);
LL_DMA_SetMemorySize(DMA1, LL_DMA_STREAM_3, LL_DMA_MDATAALIGN_BYTE);
LL_DMA_DisableFifoMode(DMA1, LL_DMA_STREAM_3);
/* USART3 interrupt Init */
NVIC_SetPriority(USART3_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
NVIC_EnableIRQ(USART3_IRQn);
/* USER CODE BEGIN USART3_Init 1 */
/* USER CODE END USART3_Init 1 */
USART_InitStruct.BaudRate = 115200;
USART_InitStruct.DataWidth = LL_USART_DATAWIDTH_8B;
USART_InitStruct.StopBits = LL_USART_STOPBITS_1;
USART_InitStruct.Parity = LL_USART_PARITY_NONE;
USART_InitStruct.TransferDirection = LL_USART_DIRECTION_TX_RX;
USART_InitStruct.HardwareFlowControl = LL_USART_HWCONTROL_NONE;
USART_InitStruct.OverSampling = LL_USART_OVERSAMPLING_16;
LL_USART_Init(USART3, &USART_InitStruct);
LL_USART_ConfigAsyncMode(USART3);
LL_USART_Enable(USART3);
/* USER CODE BEGIN USART3_Init 2 */
/*发送配置*/
//设置外设地址因为这个是DMA串口发送
LL_DMA_SetPeriphAddress(DMA1,LL_DMA_STREAM_3,(uint32_t)&USART3->DR);
//使能DMA串口发送
LL_USART_EnableDMAReq_TX(USART3);
//使能DMA2发送完成中断
LL_DMA_EnableIT_TC(DMA1,LL_DMA_STREAM_3);
/* USER CODE END USART3_Init 2 */
}
/* USART6 init function */
void MX_USART6_UART_Init(void)
{
/* USER CODE BEGIN USART6_Init 0 */
/* USER CODE END USART6_Init 0 */
LL_USART_InitTypeDef USART_InitStruct = {0};
LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
/* Peripheral clock enable */
LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_USART6);
LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOC);
/**USART6 GPIO Configuration
PC6 ------> USART6_TX
PC7 ------> USART6_RX
*/
GPIO_InitStruct.Pin = LL_GPIO_PIN_6;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
GPIO_InitStruct.Alternate = LL_GPIO_AF_8;
LL_GPIO_Init(GPIOC, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LL_GPIO_PIN_7;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
GPIO_InitStruct.Alternate = LL_GPIO_AF_8;
LL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/* USART6 DMA Init */
/* USART6_RX Init */
LL_DMA_SetChannelSelection(DMA2, LL_DMA_STREAM_1, LL_DMA_CHANNEL_5);
LL_DMA_SetDataTransferDirection(DMA2, LL_DMA_STREAM_1, LL_DMA_DIRECTION_PERIPH_TO_MEMORY);
LL_DMA_SetStreamPriorityLevel(DMA2, LL_DMA_STREAM_1, LL_DMA_PRIORITY_LOW);
LL_DMA_SetMode(DMA2, LL_DMA_STREAM_1, LL_DMA_MODE_CIRCULAR);
LL_DMA_SetPeriphIncMode(DMA2, LL_DMA_STREAM_1, LL_DMA_PERIPH_NOINCREMENT);
LL_DMA_SetMemoryIncMode(DMA2, LL_DMA_STREAM_1, LL_DMA_MEMORY_INCREMENT);
LL_DMA_SetPeriphSize(DMA2, LL_DMA_STREAM_1, LL_DMA_PDATAALIGN_BYTE);
LL_DMA_SetMemorySize(DMA2, LL_DMA_STREAM_1, LL_DMA_MDATAALIGN_BYTE);
LL_DMA_DisableFifoMode(DMA2, LL_DMA_STREAM_1);
/* USART6_TX Init */
LL_DMA_SetChannelSelection(DMA2, LL_DMA_STREAM_6, LL_DMA_CHANNEL_5);
LL_DMA_SetDataTransferDirection(DMA2, LL_DMA_STREAM_6, LL_DMA_DIRECTION_MEMORY_TO_PERIPH);
LL_DMA_SetStreamPriorityLevel(DMA2, LL_DMA_STREAM_6, LL_DMA_PRIORITY_LOW);
LL_DMA_SetMode(DMA2, LL_DMA_STREAM_6, LL_DMA_MODE_CIRCULAR);
LL_DMA_SetPeriphIncMode(DMA2, LL_DMA_STREAM_6, LL_DMA_PERIPH_NOINCREMENT);
LL_DMA_SetMemoryIncMode(DMA2, LL_DMA_STREAM_6, LL_DMA_MEMORY_INCREMENT);
LL_DMA_SetPeriphSize(DMA2, LL_DMA_STREAM_6, LL_DMA_PDATAALIGN_BYTE);
LL_DMA_SetMemorySize(DMA2, LL_DMA_STREAM_6, LL_DMA_MDATAALIGN_BYTE);
LL_DMA_DisableFifoMode(DMA2, LL_DMA_STREAM_6);
/* USART6 interrupt Init */
NVIC_SetPriority(USART6_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
NVIC_EnableIRQ(USART6_IRQn);
/* USER CODE BEGIN USART6_Init 1 */
/* USER CODE END USART6_Init 1 */
USART_InitStruct.BaudRate = 9600;
USART_InitStruct.DataWidth = LL_USART_DATAWIDTH_8B;
USART_InitStruct.StopBits = LL_USART_STOPBITS_1;
USART_InitStruct.Parity = LL_USART_PARITY_NONE;
USART_InitStruct.TransferDirection = LL_USART_DIRECTION_TX_RX;
USART_InitStruct.HardwareFlowControl = LL_USART_HWCONTROL_NONE;
USART_InitStruct.OverSampling = LL_USART_OVERSAMPLING_16;
LL_USART_Init(USART6, &USART_InitStruct);
LL_USART_ConfigAsyncMode(USART6);
LL_USART_Enable(USART6);
/* USER CODE BEGIN USART6_Init 2 */
/*接收配置*/
//使能空闲中断
LL_USART_EnableIT_IDLE(USART6);
/*发送配置*/
//设置外设地址因为这个是DMA串口发送
LL_DMA_SetPeriphAddress(DMA2,LL_DMA_STREAM_6,(uint32_t)&USART6->DR);
//使能DMA串口发送
LL_USART_EnableDMAReq_TX(USART6);
//使能DMA2发送完成中断
LL_DMA_EnableIT_TC(DMA2,LL_DMA_STREAM_6);
LL_USART_EnableIT_RXNE(USART2); //开启接收中断
/* USER CODE END USART6_Init 2 */
}
/* USER CODE BEGIN 1 */
/*****************************重写回调函数,实现串口数据接收**********************/
void modbus_init(void)
{
usart3.rx_buf = usart3_rx_buf; //接收数据变量初始化
usart3.rx_buf_cnt = 0;
usart3.rx_size = 0;
usart3.rx_flag = 0;
usart3.tx_buf = usart3_rx_buf; //发送数据变量初始化
usart3.tx_buf_cnt = USART3_TXSIZE;
usart3.tx_size = 0;
LL_USART_EnableIT_RXNE(USART3); //开启接收中断
}
void modbus_callback(void)
{
if(usart3.rx_buf_cnt >= USART3_RXSIZE-1) //接收数据量超限,错误
{
usart3.rx_buf_cnt = 0;
memset(usart3.rx_buf, 0x00, sizeof(usart3.rx_buf));
LL_USART_TransmitData8(USART3, 0xEE);
}
else //接收正常
{
RxBuffer = LL_USART_ReceiveData8(USART3);
usart3.rx_buf[usart3.rx_buf_cnt++] = RxBuffer; //接收数据存储到rx_buf
LL_TIM_DisableCounter(TIM7);
LL_TIM_SetCounter(TIM7,0);//将定时器7的计数值清零后重新计数
LL_TIM_EnableCounter(TIM7);//TIM7计数使能
}
}
void modbus_send(USART_TypeDef *Luart,uint8_t *Tx_Buf,uint16_t Size)
{
//配置内存地址
LL_DMA_SetMemoryAddress(DMA1,LL_DMA_STREAM_3,(uint32_t)Tx_Buf);
//配置数据长度
LL_DMA_SetDataLength(DMA1,LL_DMA_STREAM_3,Size);
//使能DMA STREAM 也就是发送数据
LL_DMA_EnableStream(DMA1, LL_DMA_STREAM_3);
}
void usart2_laser_send(USART_TypeDef *Luart,uint8_t *Tx_Buf,uint16_t Size)
{
//配置内存地址
LL_DMA_SetMemoryAddress(DMA1,LL_DMA_STREAM_6,(uint32_t)Tx_Buf);
//配置数据长度
LL_DMA_SetDataLength(DMA1,LL_DMA_STREAM_6,Size);
//使能DMA STREAM 也就是发送数据
LL_DMA_EnableStream(DMA1, LL_DMA_STREAM_6);
// LL_DMA_ConfigAddresses():
}
void usart6_send(uint8_t *Tx_Buf,uint16_t Size)
{
//配置内存地址
LL_DMA_SetMemoryAddress(DMA2,LL_DMA_STREAM_6,(uint32_t)Tx_Buf);
//配置数据长度
LL_DMA_SetDataLength(DMA2,LL_DMA_STREAM_6,Size);
//使能DMA STREAM 也就是发送数据
LL_DMA_EnableStream(DMA2, LL_DMA_STREAM_6);
}
//串口接收中断回调函数,激光
void usart6_rx_cb(void)//uint8_t uart_index, uint8_t *data, uint16_t len
{
// 空闲中断表明接收到了1帧所有的数据
if(LL_USART_IsActiveFlag_IDLE(USART6))
{
//清除空闲中断
LL_USART_ClearFlag_IDLE(USART6);
usart6_cnt = 0;
}
// Rx非空中断表明接收到了一个字节
// 读取Rx可自动清除中断标志位
if(LL_USART_IsActiveFlag_RXNE(USART6))
{
// 如果数组长度大于设置的data最大长度直接停止接收
if(usart6_cnt > 50)
usart6_cnt = 0; // wait for the next data
usart6_rx_buf[usart6_cnt] = LL_USART_ReceiveData8(USART6);
usart6_cnt ++;
}
}
/* USER CODE END 1 */

View File

@ -0,0 +1,411 @@
/******************************************************************************
* @file cachel1_armv7.h
* @brief CMSIS Level 1 Cache API for Armv7-M and later
* @version V1.0.1
* @date 19. April 2021
******************************************************************************/
/*
* Copyright (c) 2020-2021 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef ARM_CACHEL1_ARMV7_H
#define ARM_CACHEL1_ARMV7_H
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_CacheFunctions Cache Functions
\brief Functions that configure Instruction and Data cache.
@{
*/
/* Cache Size ID Register Macros */
#define CCSIDR_WAYS(x) (((x) & SCB_CCSIDR_ASSOCIATIVITY_Msk) >> SCB_CCSIDR_ASSOCIATIVITY_Pos)
#define CCSIDR_SETS(x) (((x) & SCB_CCSIDR_NUMSETS_Msk ) >> SCB_CCSIDR_NUMSETS_Pos )
#ifndef __SCB_DCACHE_LINE_SIZE
#define __SCB_DCACHE_LINE_SIZE 32U /*!< Cortex-M7 cache line size is fixed to 32 bytes (8 words). See also register SCB_CCSIDR */
#endif
#ifndef __SCB_ICACHE_LINE_SIZE
#define __SCB_ICACHE_LINE_SIZE 32U /*!< Cortex-M7 cache line size is fixed to 32 bytes (8 words). See also register SCB_CCSIDR */
#endif
/**
\brief Enable I-Cache
\details Turns on I-Cache
*/
__STATIC_FORCEINLINE void SCB_EnableICache (void)
{
#if defined (__ICACHE_PRESENT) && (__ICACHE_PRESENT == 1U)
if (SCB->CCR & SCB_CCR_IC_Msk) return; /* return if ICache is already enabled */
__DSB();
__ISB();
SCB->ICIALLU = 0UL; /* invalidate I-Cache */
__DSB();
__ISB();
SCB->CCR |= (uint32_t)SCB_CCR_IC_Msk; /* enable I-Cache */
__DSB();
__ISB();
#endif
}
/**
\brief Disable I-Cache
\details Turns off I-Cache
*/
__STATIC_FORCEINLINE void SCB_DisableICache (void)
{
#if defined (__ICACHE_PRESENT) && (__ICACHE_PRESENT == 1U)
__DSB();
__ISB();
SCB->CCR &= ~(uint32_t)SCB_CCR_IC_Msk; /* disable I-Cache */
SCB->ICIALLU = 0UL; /* invalidate I-Cache */
__DSB();
__ISB();
#endif
}
/**
\brief Invalidate I-Cache
\details Invalidates I-Cache
*/
__STATIC_FORCEINLINE void SCB_InvalidateICache (void)
{
#if defined (__ICACHE_PRESENT) && (__ICACHE_PRESENT == 1U)
__DSB();
__ISB();
SCB->ICIALLU = 0UL;
__DSB();
__ISB();
#endif
}
/**
\brief I-Cache Invalidate by address
\details Invalidates I-Cache for the given address.
I-Cache is invalidated starting from a 32 byte aligned address in 32 byte granularity.
I-Cache memory blocks which are part of given address + given size are invalidated.
\param[in] addr address
\param[in] isize size of memory block (in number of bytes)
*/
__STATIC_FORCEINLINE void SCB_InvalidateICache_by_Addr (volatile void *addr, int32_t isize)
{
#if defined (__ICACHE_PRESENT) && (__ICACHE_PRESENT == 1U)
if ( isize > 0 ) {
int32_t op_size = isize + (((uint32_t)addr) & (__SCB_ICACHE_LINE_SIZE - 1U));
uint32_t op_addr = (uint32_t)addr /* & ~(__SCB_ICACHE_LINE_SIZE - 1U) */;
__DSB();
do {
SCB->ICIMVAU = op_addr; /* register accepts only 32byte aligned values, only bits 31..5 are valid */
op_addr += __SCB_ICACHE_LINE_SIZE;
op_size -= __SCB_ICACHE_LINE_SIZE;
} while ( op_size > 0 );
__DSB();
__ISB();
}
#endif
}
/**
\brief Enable D-Cache
\details Turns on D-Cache
*/
__STATIC_FORCEINLINE void SCB_EnableDCache (void)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
uint32_t ccsidr;
uint32_t sets;
uint32_t ways;
if (SCB->CCR & SCB_CCR_DC_Msk) return; /* return if DCache is already enabled */
SCB->CSSELR = 0U; /* select Level 1 data cache */
__DSB();
ccsidr = SCB->CCSIDR;
/* invalidate D-Cache */
sets = (uint32_t)(CCSIDR_SETS(ccsidr));
do {
ways = (uint32_t)(CCSIDR_WAYS(ccsidr));
do {
SCB->DCISW = (((sets << SCB_DCISW_SET_Pos) & SCB_DCISW_SET_Msk) |
((ways << SCB_DCISW_WAY_Pos) & SCB_DCISW_WAY_Msk) );
#if defined ( __CC_ARM )
__schedule_barrier();
#endif
} while (ways-- != 0U);
} while(sets-- != 0U);
__DSB();
SCB->CCR |= (uint32_t)SCB_CCR_DC_Msk; /* enable D-Cache */
__DSB();
__ISB();
#endif
}
/**
\brief Disable D-Cache
\details Turns off D-Cache
*/
__STATIC_FORCEINLINE void SCB_DisableDCache (void)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
uint32_t ccsidr;
uint32_t sets;
uint32_t ways;
SCB->CSSELR = 0U; /* select Level 1 data cache */
__DSB();
SCB->CCR &= ~(uint32_t)SCB_CCR_DC_Msk; /* disable D-Cache */
__DSB();
ccsidr = SCB->CCSIDR;
/* clean & invalidate D-Cache */
sets = (uint32_t)(CCSIDR_SETS(ccsidr));
do {
ways = (uint32_t)(CCSIDR_WAYS(ccsidr));
do {
SCB->DCCISW = (((sets << SCB_DCCISW_SET_Pos) & SCB_DCCISW_SET_Msk) |
((ways << SCB_DCCISW_WAY_Pos) & SCB_DCCISW_WAY_Msk) );
#if defined ( __CC_ARM )
__schedule_barrier();
#endif
} while (ways-- != 0U);
} while(sets-- != 0U);
__DSB();
__ISB();
#endif
}
/**
\brief Invalidate D-Cache
\details Invalidates D-Cache
*/
__STATIC_FORCEINLINE void SCB_InvalidateDCache (void)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
uint32_t ccsidr;
uint32_t sets;
uint32_t ways;
SCB->CSSELR = 0U; /* select Level 1 data cache */
__DSB();
ccsidr = SCB->CCSIDR;
/* invalidate D-Cache */
sets = (uint32_t)(CCSIDR_SETS(ccsidr));
do {
ways = (uint32_t)(CCSIDR_WAYS(ccsidr));
do {
SCB->DCISW = (((sets << SCB_DCISW_SET_Pos) & SCB_DCISW_SET_Msk) |
((ways << SCB_DCISW_WAY_Pos) & SCB_DCISW_WAY_Msk) );
#if defined ( __CC_ARM )
__schedule_barrier();
#endif
} while (ways-- != 0U);
} while(sets-- != 0U);
__DSB();
__ISB();
#endif
}
/**
\brief Clean D-Cache
\details Cleans D-Cache
*/
__STATIC_FORCEINLINE void SCB_CleanDCache (void)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
uint32_t ccsidr;
uint32_t sets;
uint32_t ways;
SCB->CSSELR = 0U; /* select Level 1 data cache */
__DSB();
ccsidr = SCB->CCSIDR;
/* clean D-Cache */
sets = (uint32_t)(CCSIDR_SETS(ccsidr));
do {
ways = (uint32_t)(CCSIDR_WAYS(ccsidr));
do {
SCB->DCCSW = (((sets << SCB_DCCSW_SET_Pos) & SCB_DCCSW_SET_Msk) |
((ways << SCB_DCCSW_WAY_Pos) & SCB_DCCSW_WAY_Msk) );
#if defined ( __CC_ARM )
__schedule_barrier();
#endif
} while (ways-- != 0U);
} while(sets-- != 0U);
__DSB();
__ISB();
#endif
}
/**
\brief Clean & Invalidate D-Cache
\details Cleans and Invalidates D-Cache
*/
__STATIC_FORCEINLINE void SCB_CleanInvalidateDCache (void)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
uint32_t ccsidr;
uint32_t sets;
uint32_t ways;
SCB->CSSELR = 0U; /* select Level 1 data cache */
__DSB();
ccsidr = SCB->CCSIDR;
/* clean & invalidate D-Cache */
sets = (uint32_t)(CCSIDR_SETS(ccsidr));
do {
ways = (uint32_t)(CCSIDR_WAYS(ccsidr));
do {
SCB->DCCISW = (((sets << SCB_DCCISW_SET_Pos) & SCB_DCCISW_SET_Msk) |
((ways << SCB_DCCISW_WAY_Pos) & SCB_DCCISW_WAY_Msk) );
#if defined ( __CC_ARM )
__schedule_barrier();
#endif
} while (ways-- != 0U);
} while(sets-- != 0U);
__DSB();
__ISB();
#endif
}
/**
\brief D-Cache Invalidate by address
\details Invalidates D-Cache for the given address.
D-Cache is invalidated starting from a 32 byte aligned address in 32 byte granularity.
D-Cache memory blocks which are part of given address + given size are invalidated.
\param[in] addr address
\param[in] dsize size of memory block (in number of bytes)
*/
__STATIC_FORCEINLINE void SCB_InvalidateDCache_by_Addr (volatile void *addr, int32_t dsize)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
if ( dsize > 0 ) {
int32_t op_size = dsize + (((uint32_t)addr) & (__SCB_DCACHE_LINE_SIZE - 1U));
uint32_t op_addr = (uint32_t)addr /* & ~(__SCB_DCACHE_LINE_SIZE - 1U) */;
__DSB();
do {
SCB->DCIMVAC = op_addr; /* register accepts only 32byte aligned values, only bits 31..5 are valid */
op_addr += __SCB_DCACHE_LINE_SIZE;
op_size -= __SCB_DCACHE_LINE_SIZE;
} while ( op_size > 0 );
__DSB();
__ISB();
}
#endif
}
/**
\brief D-Cache Clean by address
\details Cleans D-Cache for the given address
D-Cache is cleaned starting from a 32 byte aligned address in 32 byte granularity.
D-Cache memory blocks which are part of given address + given size are cleaned.
\param[in] addr address
\param[in] dsize size of memory block (in number of bytes)
*/
__STATIC_FORCEINLINE void SCB_CleanDCache_by_Addr (volatile void *addr, int32_t dsize)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
if ( dsize > 0 ) {
int32_t op_size = dsize + (((uint32_t)addr) & (__SCB_DCACHE_LINE_SIZE - 1U));
uint32_t op_addr = (uint32_t)addr /* & ~(__SCB_DCACHE_LINE_SIZE - 1U) */;
__DSB();
do {
SCB->DCCMVAC = op_addr; /* register accepts only 32byte aligned values, only bits 31..5 are valid */
op_addr += __SCB_DCACHE_LINE_SIZE;
op_size -= __SCB_DCACHE_LINE_SIZE;
} while ( op_size > 0 );
__DSB();
__ISB();
}
#endif
}
/**
\brief D-Cache Clean and Invalidate by address
\details Cleans and invalidates D_Cache for the given address
D-Cache is cleaned and invalidated starting from a 32 byte aligned address in 32 byte granularity.
D-Cache memory blocks which are part of given address + given size are cleaned and invalidated.
\param[in] addr address (aligned to 32-byte boundary)
\param[in] dsize size of memory block (in number of bytes)
*/
__STATIC_FORCEINLINE void SCB_CleanInvalidateDCache_by_Addr (volatile void *addr, int32_t dsize)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
if ( dsize > 0 ) {
int32_t op_size = dsize + (((uint32_t)addr) & (__SCB_DCACHE_LINE_SIZE - 1U));
uint32_t op_addr = (uint32_t)addr /* & ~(__SCB_DCACHE_LINE_SIZE - 1U) */;
__DSB();
do {
SCB->DCCIMVAC = op_addr; /* register accepts only 32byte aligned values, only bits 31..5 are valid */
op_addr += __SCB_DCACHE_LINE_SIZE;
op_size -= __SCB_DCACHE_LINE_SIZE;
} while ( op_size > 0 );
__DSB();
__ISB();
}
#endif
}
/*@} end of CMSIS_Core_CacheFunctions */
#endif /* ARM_CACHEL1_ARMV7_H */

View File

@ -0,0 +1,888 @@
/**************************************************************************//**
* @file cmsis_armcc.h
* @brief CMSIS compiler ARMCC (Arm Compiler 5) header file
* @version V5.3.2
* @date 27. May 2021
******************************************************************************/
/*
* Copyright (c) 2009-2021 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __CMSIS_ARMCC_H
#define __CMSIS_ARMCC_H
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 400677)
#error "Please use Arm Compiler Toolchain V4.0.677 or later!"
#endif
/* CMSIS compiler control architecture macros */
#if ((defined (__TARGET_ARCH_6_M ) && (__TARGET_ARCH_6_M == 1)) || \
(defined (__TARGET_ARCH_6S_M ) && (__TARGET_ARCH_6S_M == 1)) )
#define __ARM_ARCH_6M__ 1
#endif
#if (defined (__TARGET_ARCH_7_M ) && (__TARGET_ARCH_7_M == 1))
#define __ARM_ARCH_7M__ 1
#endif
#if (defined (__TARGET_ARCH_7E_M) && (__TARGET_ARCH_7E_M == 1))
#define __ARM_ARCH_7EM__ 1
#endif
/* __ARM_ARCH_8M_BASE__ not applicable */
/* __ARM_ARCH_8M_MAIN__ not applicable */
/* __ARM_ARCH_8_1M_MAIN__ not applicable */
/* CMSIS compiler control DSP macros */
#if ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
#define __ARM_FEATURE_DSP 1
#endif
/* CMSIS compiler specific defines */
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE __inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static __inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE static __forceinline
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __declspec(noreturn)
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed))
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT __packed struct
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION __packed union
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
#define __UNALIGNED_UINT32(x) (*((__packed uint32_t *)(x)))
#endif
#ifndef __UNALIGNED_UINT16_WRITE
#define __UNALIGNED_UINT16_WRITE(addr, val) ((*((__packed uint16_t *)(addr))) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
#define __UNALIGNED_UINT16_READ(addr) (*((const __packed uint16_t *)(addr)))
#endif
#ifndef __UNALIGNED_UINT32_WRITE
#define __UNALIGNED_UINT32_WRITE(addr, val) ((*((__packed uint32_t *)(addr))) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
#define __UNALIGNED_UINT32_READ(addr) (*((const __packed uint32_t *)(addr)))
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __attribute__((aligned(x)))
#endif
#ifndef __RESTRICT
#define __RESTRICT __restrict
#endif
#ifndef __COMPILER_BARRIER
#define __COMPILER_BARRIER() __memory_changed()
#endif
/* ######################### Startup and Lowlevel Init ######################## */
#ifndef __PROGRAM_START
#define __PROGRAM_START __main
#endif
#ifndef __INITIAL_SP
#define __INITIAL_SP Image$$ARM_LIB_STACK$$ZI$$Limit
#endif
#ifndef __STACK_LIMIT
#define __STACK_LIMIT Image$$ARM_LIB_STACK$$ZI$$Base
#endif
#ifndef __VECTOR_TABLE
#define __VECTOR_TABLE __Vectors
#endif
#ifndef __VECTOR_TABLE_ATTRIBUTE
#define __VECTOR_TABLE_ATTRIBUTE __attribute__((used, section("RESET")))
#endif
/* ########################## Core Instruction Access ######################### */
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
Access to dedicated instructions
@{
*/
/**
\brief No Operation
\details No Operation does nothing. This instruction can be used for code alignment purposes.
*/
#define __NOP __nop
/**
\brief Wait For Interrupt
\details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
*/
#define __WFI __wfi
/**
\brief Wait For Event
\details Wait For Event is a hint instruction that permits the processor to enter
a low-power state until one of a number of events occurs.
*/
#define __WFE __wfe
/**
\brief Send Event
\details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
*/
#define __SEV __sev
/**
\brief Instruction Synchronization Barrier
\details Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or memory,
after the instruction has been completed.
*/
#define __ISB() __isb(0xF)
/**
\brief Data Synchronization Barrier
\details Acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
#define __DSB() __dsb(0xF)
/**
\brief Data Memory Barrier
\details Ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
#define __DMB() __dmb(0xF)
/**
\brief Reverse byte order (32 bit)
\details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
\param [in] value Value to reverse
\return Reversed value
*/
#define __REV __rev
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
\param [in] value Value to reverse
\return Reversed value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value)
{
rev16 r0, r0
bx lr
}
#endif
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
\param [in] value Value to reverse
\return Reversed value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int16_t __REVSH(int16_t value)
{
revsh r0, r0
bx lr
}
#endif
/**
\brief Rotate Right in unsigned value (32 bit)
\details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
\param [in] op1 Value to rotate
\param [in] op2 Number of Bits to rotate
\return Rotated value
*/
#define __ROR __ror
/**
\brief Breakpoint
\details Causes the processor to enter Debug state.
Debug tools can use this to investigate system state when the instruction at a particular address is reached.
\param [in] value is ignored by the processor.
If required, a debugger can use it to store additional information about the breakpoint.
*/
#define __BKPT(value) __breakpoint(value)
/**
\brief Reverse bit order of value
\details Reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
#define __RBIT __rbit
#else
__attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
{
uint32_t result;
uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
result = value; /* r will be reversed bits of v; first get LSB of v */
for (value >>= 1U; value != 0U; value >>= 1U)
{
result <<= 1U;
result |= value & 1U;
s--;
}
result <<= s; /* shift when v's highest bits are zero */
return result;
}
#endif
/**
\brief Count leading zeros
\details Counts the number of leading zeros of a data value.
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
#define __CLZ __clz
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
/**
\brief LDR Exclusive (8 bit)
\details Executes a exclusive LDR instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr))
#else
#define __LDREXB(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint8_t ) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief LDR Exclusive (16 bit)
\details Executes a exclusive LDR instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXH(ptr) ((uint16_t) __ldrex(ptr))
#else
#define __LDREXH(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint16_t) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief LDR Exclusive (32 bit)
\details Executes a exclusive LDR instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr))
#else
#define __LDREXW(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint32_t ) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief STR Exclusive (8 bit)
\details Executes a exclusive STR instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXB(value, ptr) __strex(value, ptr)
#else
#define __STREXB(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief STR Exclusive (16 bit)
\details Executes a exclusive STR instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXH(value, ptr) __strex(value, ptr)
#else
#define __STREXH(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief STR Exclusive (32 bit)
\details Executes a exclusive STR instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXW(value, ptr) __strex(value, ptr)
#else
#define __STREXW(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief Remove the exclusive lock
\details Removes the exclusive lock which is created by LDREX.
*/
#define __CLREX __clrex
/**
\brief Signed Saturate
\details Saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT __ssat
/**
\brief Unsigned Saturate
\details Saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT __usat
/**
\brief Rotate Right with Extend (32 bit)
\details Moves each bit of a bitstring right by one bit.
The carry input is shifted in at the left end of the bitstring.
\param [in] value Value to rotate
\return Rotated value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".rrx_text"))) __STATIC_INLINE __ASM uint32_t __RRX(uint32_t value)
{
rrx r0, r0
bx lr
}
#endif
/**
\brief LDRT Unprivileged (8 bit)
\details Executes a Unprivileged LDRT instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#define __LDRBT(ptr) ((uint8_t ) __ldrt(ptr))
/**
\brief LDRT Unprivileged (16 bit)
\details Executes a Unprivileged LDRT instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#define __LDRHT(ptr) ((uint16_t) __ldrt(ptr))
/**
\brief LDRT Unprivileged (32 bit)
\details Executes a Unprivileged LDRT instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#define __LDRT(ptr) ((uint32_t ) __ldrt(ptr))
/**
\brief STRT Unprivileged (8 bit)
\details Executes a Unprivileged STRT instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRBT(value, ptr) __strt(value, ptr)
/**
\brief STRT Unprivileged (16 bit)
\details Executes a Unprivileged STRT instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRHT(value, ptr) __strt(value, ptr)
/**
\brief STRT Unprivileged (32 bit)
\details Executes a Unprivileged STRT instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRT(value, ptr) __strt(value, ptr)
#else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/**
\brief Signed Saturate
\details Saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
__attribute__((always_inline)) __STATIC_INLINE int32_t __SSAT(int32_t val, uint32_t sat)
{
if ((sat >= 1U) && (sat <= 32U))
{
const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
const int32_t min = -1 - max ;
if (val > max)
{
return max;
}
else if (val < min)
{
return min;
}
}
return val;
}
/**
\brief Unsigned Saturate
\details Saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
__attribute__((always_inline)) __STATIC_INLINE uint32_t __USAT(int32_t val, uint32_t sat)
{
if (sat <= 31U)
{
const uint32_t max = ((1U << sat) - 1U);
if (val > (int32_t)max)
{
return max;
}
else if (val < 0)
{
return 0U;
}
}
return (uint32_t)val;
}
#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
/* ########################### Core Function Access ########################### */
/** \ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
@{
*/
/**
\brief Enable IRQ Interrupts
\details Enables IRQ interrupts by clearing special-purpose register PRIMASK.
Can only be executed in Privileged modes.
*/
/* intrinsic void __enable_irq(); */
/**
\brief Disable IRQ Interrupts
\details Disables IRQ interrupts by setting special-purpose register PRIMASK.
Can only be executed in Privileged modes.
*/
/* intrinsic void __disable_irq(); */
/**
\brief Get Control Register
\details Returns the content of the Control Register.
\return Control Register value
*/
__STATIC_INLINE uint32_t __get_CONTROL(void)
{
register uint32_t __regControl __ASM("control");
return(__regControl);
}
/**
\brief Set Control Register
\details Writes the given value to the Control Register.
\param [in] control Control Register value to set
*/
__STATIC_INLINE void __set_CONTROL(uint32_t control)
{
register uint32_t __regControl __ASM("control");
__regControl = control;
__ISB();
}
/**
\brief Get IPSR Register
\details Returns the content of the IPSR Register.
\return IPSR Register value
*/
__STATIC_INLINE uint32_t __get_IPSR(void)
{
register uint32_t __regIPSR __ASM("ipsr");
return(__regIPSR);
}
/**
\brief Get APSR Register
\details Returns the content of the APSR Register.
\return APSR Register value
*/
__STATIC_INLINE uint32_t __get_APSR(void)
{
register uint32_t __regAPSR __ASM("apsr");
return(__regAPSR);
}
/**
\brief Get xPSR Register
\details Returns the content of the xPSR Register.
\return xPSR Register value
*/
__STATIC_INLINE uint32_t __get_xPSR(void)
{
register uint32_t __regXPSR __ASM("xpsr");
return(__regXPSR);
}
/**
\brief Get Process Stack Pointer
\details Returns the current value of the Process Stack Pointer (PSP).
\return PSP Register value
*/
__STATIC_INLINE uint32_t __get_PSP(void)
{
register uint32_t __regProcessStackPointer __ASM("psp");
return(__regProcessStackPointer);
}
/**
\brief Set Process Stack Pointer
\details Assigns the given value to the Process Stack Pointer (PSP).
\param [in] topOfProcStack Process Stack Pointer value to set
*/
__STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
{
register uint32_t __regProcessStackPointer __ASM("psp");
__regProcessStackPointer = topOfProcStack;
}
/**
\brief Get Main Stack Pointer
\details Returns the current value of the Main Stack Pointer (MSP).
\return MSP Register value
*/
__STATIC_INLINE uint32_t __get_MSP(void)
{
register uint32_t __regMainStackPointer __ASM("msp");
return(__regMainStackPointer);
}
/**
\brief Set Main Stack Pointer
\details Assigns the given value to the Main Stack Pointer (MSP).
\param [in] topOfMainStack Main Stack Pointer value to set
*/
__STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
{
register uint32_t __regMainStackPointer __ASM("msp");
__regMainStackPointer = topOfMainStack;
}
/**
\brief Get Priority Mask
\details Returns the current state of the priority mask bit from the Priority Mask Register.
\return Priority Mask value
*/
__STATIC_INLINE uint32_t __get_PRIMASK(void)
{
register uint32_t __regPriMask __ASM("primask");
return(__regPriMask);
}
/**
\brief Set Priority Mask
\details Assigns the given value to the Priority Mask Register.
\param [in] priMask Priority Mask
*/
__STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
{
register uint32_t __regPriMask __ASM("primask");
__regPriMask = (priMask);
}
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
/**
\brief Enable FIQ
\details Enables FIQ interrupts by clearing special-purpose register FAULTMASK.
Can only be executed in Privileged modes.
*/
#define __enable_fault_irq __enable_fiq
/**
\brief Disable FIQ
\details Disables FIQ interrupts by setting special-purpose register FAULTMASK.
Can only be executed in Privileged modes.
*/
#define __disable_fault_irq __disable_fiq
/**
\brief Get Base Priority
\details Returns the current value of the Base Priority register.
\return Base Priority register value
*/
__STATIC_INLINE uint32_t __get_BASEPRI(void)
{
register uint32_t __regBasePri __ASM("basepri");
return(__regBasePri);
}
/**
\brief Set Base Priority
\details Assigns the given value to the Base Priority register.
\param [in] basePri Base Priority value to set
*/
__STATIC_INLINE void __set_BASEPRI(uint32_t basePri)
{
register uint32_t __regBasePri __ASM("basepri");
__regBasePri = (basePri & 0xFFU);
}
/**
\brief Set Base Priority with condition
\details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
or the new value increases the BASEPRI priority level.
\param [in] basePri Base Priority value to set
*/
__STATIC_INLINE void __set_BASEPRI_MAX(uint32_t basePri)
{
register uint32_t __regBasePriMax __ASM("basepri_max");
__regBasePriMax = (basePri & 0xFFU);
}
/**
\brief Get Fault Mask
\details Returns the current value of the Fault Mask register.
\return Fault Mask register value
*/
__STATIC_INLINE uint32_t __get_FAULTMASK(void)
{
register uint32_t __regFaultMask __ASM("faultmask");
return(__regFaultMask);
}
/**
\brief Set Fault Mask
\details Assigns the given value to the Fault Mask register.
\param [in] faultMask Fault Mask value to set
*/
__STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
{
register uint32_t __regFaultMask __ASM("faultmask");
__regFaultMask = (faultMask & (uint32_t)1U);
}
#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/**
\brief Get FPSCR
\details Returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
__STATIC_INLINE uint32_t __get_FPSCR(void)
{
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
register uint32_t __regfpscr __ASM("fpscr");
return(__regfpscr);
#else
return(0U);
#endif
}
/**
\brief Set FPSCR
\details Assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
__STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
{
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
register uint32_t __regfpscr __ASM("fpscr");
__regfpscr = (fpscr);
#else
(void)fpscr;
#endif
}
/*@} end of CMSIS_Core_RegAccFunctions */
/* ################### Compiler specific Intrinsics ########################### */
/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
Access to dedicated SIMD instructions
@{
*/
#if ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
#define __SADD8 __sadd8
#define __QADD8 __qadd8
#define __SHADD8 __shadd8
#define __UADD8 __uadd8
#define __UQADD8 __uqadd8
#define __UHADD8 __uhadd8
#define __SSUB8 __ssub8
#define __QSUB8 __qsub8
#define __SHSUB8 __shsub8
#define __USUB8 __usub8
#define __UQSUB8 __uqsub8
#define __UHSUB8 __uhsub8
#define __SADD16 __sadd16
#define __QADD16 __qadd16
#define __SHADD16 __shadd16
#define __UADD16 __uadd16
#define __UQADD16 __uqadd16
#define __UHADD16 __uhadd16
#define __SSUB16 __ssub16
#define __QSUB16 __qsub16
#define __SHSUB16 __shsub16
#define __USUB16 __usub16
#define __UQSUB16 __uqsub16
#define __UHSUB16 __uhsub16
#define __SASX __sasx
#define __QASX __qasx
#define __SHASX __shasx
#define __UASX __uasx
#define __UQASX __uqasx
#define __UHASX __uhasx
#define __SSAX __ssax
#define __QSAX __qsax
#define __SHSAX __shsax
#define __USAX __usax
#define __UQSAX __uqsax
#define __UHSAX __uhsax
#define __USAD8 __usad8
#define __USADA8 __usada8
#define __SSAT16 __ssat16
#define __USAT16 __usat16
#define __UXTB16 __uxtb16
#define __UXTAB16 __uxtab16
#define __SXTB16 __sxtb16
#define __SXTAB16 __sxtab16
#define __SMUAD __smuad
#define __SMUADX __smuadx
#define __SMLAD __smlad
#define __SMLADX __smladx
#define __SMLALD __smlald
#define __SMLALDX __smlaldx
#define __SMUSD __smusd
#define __SMUSDX __smusdx
#define __SMLSD __smlsd
#define __SMLSDX __smlsdx
#define __SMLSLD __smlsld
#define __SMLSLDX __smlsldx
#define __SEL __sel
#define __QADD __qadd
#define __QSUB __qsub
#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
#define __SMMLA(ARG1,ARG2,ARG3) ( (int32_t)((((int64_t)(ARG1) * (ARG2)) + \
((int64_t)(ARG3) << 32U) ) >> 32U))
#define __SXTB16_RORn(ARG1, ARG2) __SXTB16(__ROR(ARG1, ARG2))
#define __SXTAB16_RORn(ARG1, ARG2, ARG3) __SXTAB16(ARG1, __ROR(ARG2, ARG3))
#endif /* ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/*@} end of group CMSIS_SIMD_intrinsics */
#endif /* __CMSIS_ARMCC_H */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,283 @@
/**************************************************************************//**
* @file cmsis_compiler.h
* @brief CMSIS compiler generic header file
* @version V5.1.0
* @date 09. October 2018
******************************************************************************/
/*
* Copyright (c) 2009-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __CMSIS_COMPILER_H
#define __CMSIS_COMPILER_H
#include <stdint.h>
/*
* Arm Compiler 4/5
*/
#if defined ( __CC_ARM )
#include "cmsis_armcc.h"
/*
* Arm Compiler 6.6 LTM (armclang)
*/
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) && (__ARMCC_VERSION < 6100100)
#include "cmsis_armclang_ltm.h"
/*
* Arm Compiler above 6.10.1 (armclang)
*/
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6100100)
#include "cmsis_armclang.h"
/*
* GNU Compiler
*/
#elif defined ( __GNUC__ )
#include "cmsis_gcc.h"
/*
* IAR Compiler
*/
#elif defined ( __ICCARM__ )
#include <cmsis_iccarm.h>
/*
* TI Arm Compiler
*/
#elif defined ( __TI_ARM__ )
#include <cmsis_ccs.h>
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __STATIC_INLINE
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __attribute__((noreturn))
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed))
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT struct __attribute__((packed))
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION union __attribute__((packed))
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
struct __attribute__((packed)) T_UINT32 { uint32_t v; };
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void*)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __attribute__((aligned(x)))
#endif
#ifndef __RESTRICT
#define __RESTRICT __restrict
#endif
#ifndef __COMPILER_BARRIER
#warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored.
#define __COMPILER_BARRIER() (void)0
#endif
/*
* TASKING Compiler
*/
#elif defined ( __TASKING__ )
/*
* The CMSIS functions have been implemented as intrinsics in the compiler.
* Please use "carm -?i" to get an up to date list of all intrinsics,
* Including the CMSIS ones.
*/
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __STATIC_INLINE
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __attribute__((noreturn))
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __packed__
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT struct __packed__
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION union __packed__
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
struct __packed__ T_UINT32 { uint32_t v; };
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __align(x)
#endif
#ifndef __RESTRICT
#warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored.
#define __RESTRICT
#endif
#ifndef __COMPILER_BARRIER
#warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored.
#define __COMPILER_BARRIER() (void)0
#endif
/*
* COSMIC Compiler
*/
#elif defined ( __CSMC__ )
#include <cmsis_csm.h>
#ifndef __ASM
#define __ASM _asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __STATIC_INLINE
#endif
#ifndef __NO_RETURN
// NO RETURN is automatically detected hence no warning here
#define __NO_RETURN
#endif
#ifndef __USED
#warning No compiler specific solution for __USED. __USED is ignored.
#define __USED
#endif
#ifndef __WEAK
#define __WEAK __weak
#endif
#ifndef __PACKED
#define __PACKED @packed
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT @packed struct
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION @packed union
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
@packed struct T_UINT32 { uint32_t v; };
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
#endif
#ifndef __ALIGNED
#warning No compiler specific solution for __ALIGNED. __ALIGNED is ignored.
#define __ALIGNED(x)
#endif
#ifndef __RESTRICT
#warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored.
#define __RESTRICT
#endif
#ifndef __COMPILER_BARRIER
#warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored.
#define __COMPILER_BARRIER() (void)0
#endif
#else
#error Unknown compiler.
#endif
#endif /* __CMSIS_COMPILER_H */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,39 @@
/**************************************************************************//**
* @file cmsis_version.h
* @brief CMSIS Core(M) Version definitions
* @version V5.0.5
* @date 02. February 2022
******************************************************************************/
/*
* Copyright (c) 2009-2022 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef __CMSIS_VERSION_H
#define __CMSIS_VERSION_H
/* CMSIS Version definitions */
#define __CM_CMSIS_VERSION_MAIN ( 5U) /*!< [31:16] CMSIS Core(M) main version */
#define __CM_CMSIS_VERSION_SUB ( 6U) /*!< [15:0] CMSIS Core(M) sub version */
#define __CM_CMSIS_VERSION ((__CM_CMSIS_VERSION_MAIN << 16U) | \
__CM_CMSIS_VERSION_SUB ) /*!< CMSIS Core(M) version number */
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,952 @@
/**************************************************************************//**
* @file core_cm0.h
* @brief CMSIS Cortex-M0 Core Peripheral Access Layer Header File
* @version V5.0.8
* @date 21. August 2019
******************************************************************************/
/*
* Copyright (c) 2009-2019 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef __CORE_CM0_H_GENERIC
#define __CORE_CM0_H_GENERIC
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
\page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions
CMSIS violates the following MISRA-C:2004 rules:
\li Required Rule 8.5, object/function definition in header file.<br>
Function definitions in header files are used to allow 'inlining'.
\li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
Unions are used for effective representation of core registers.
\li Advisory Rule 19.7, Function-like macro defined.<br>
Function-like macros are used to allow more efficient code.
*/
/*******************************************************************************
* CMSIS definitions
******************************************************************************/
/**
\ingroup Cortex_M0
@{
*/
#include "cmsis_version.h"
/* CMSIS CM0 definitions */
#define __CM0_CMSIS_VERSION_MAIN (__CM_CMSIS_VERSION_MAIN) /*!< \deprecated [31:16] CMSIS HAL main version */
#define __CM0_CMSIS_VERSION_SUB (__CM_CMSIS_VERSION_SUB) /*!< \deprecated [15:0] CMSIS HAL sub version */
#define __CM0_CMSIS_VERSION ((__CM0_CMSIS_VERSION_MAIN << 16U) | \
__CM0_CMSIS_VERSION_SUB ) /*!< \deprecated CMSIS HAL version number */
#define __CORTEX_M (0U) /*!< Cortex-M Core */
/** __FPU_USED indicates whether an FPU is used or not.
This core does not support an FPU at all
*/
#define __FPU_USED 0U
#if defined ( __CC_ARM )
#if defined __TARGET_FPU_VFP
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
#if defined __ARM_FP
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __GNUC__ )
#if defined (__VFP_FP__) && !defined(__SOFTFP__)
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __ICCARM__ )
#if defined __ARMVFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TI_ARM__ )
#if defined __TI_VFP_SUPPORT__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TASKING__ )
#if defined __FPU_VFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __CSMC__ )
#if ( __CSMC__ & 0x400U)
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#endif
#include "cmsis_compiler.h" /* CMSIS compiler specific defines */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM0_H_GENERIC */
#ifndef __CMSIS_GENERIC
#ifndef __CORE_CM0_H_DEPENDANT
#define __CORE_CM0_H_DEPENDANT
#ifdef __cplusplus
extern "C" {
#endif
/* check device defines and use defaults */
#if defined __CHECK_DEVICE_DEFINES
#ifndef __CM0_REV
#define __CM0_REV 0x0000U
#warning "__CM0_REV not defined in device header file; using default!"
#endif
#ifndef __NVIC_PRIO_BITS
#define __NVIC_PRIO_BITS 2U
#warning "__NVIC_PRIO_BITS not defined in device header file; using default!"
#endif
#ifndef __Vendor_SysTickConfig
#define __Vendor_SysTickConfig 0U
#warning "__Vendor_SysTickConfig not defined in device header file; using default!"
#endif
#endif
/* IO definitions (access restrictions to peripheral registers) */
/**
\defgroup CMSIS_glob_defs CMSIS Global Defines
<strong>IO Type Qualifiers</strong> are used
\li to specify the access to peripheral variables.
\li for automatic generation of peripheral register debug information.
*/
#ifdef __cplusplus
#define __I volatile /*!< Defines 'read only' permissions */
#else
#define __I volatile const /*!< Defines 'read only' permissions */
#endif
#define __O volatile /*!< Defines 'write only' permissions */
#define __IO volatile /*!< Defines 'read / write' permissions */
/* following defines should be used for structure members */
#define __IM volatile const /*! Defines 'read only' structure member permissions */
#define __OM volatile /*! Defines 'write only' structure member permissions */
#define __IOM volatile /*! Defines 'read / write' structure member permissions */
/*@} end of group Cortex_M0 */
/*******************************************************************************
* Register Abstraction
Core Register contain:
- Core Register
- Core NVIC Register
- Core SCB Register
- Core SysTick Register
******************************************************************************/
/**
\defgroup CMSIS_core_register Defines and Type Definitions
\brief Type definitions and defines for Cortex-M processor based devices.
*/
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_CORE Status and Control Registers
\brief Core Register type definitions.
@{
*/
/**
\brief Union type to access the Application Program Status Register (APSR).
*/
typedef union
{
struct
{
uint32_t _reserved0:28; /*!< bit: 0..27 Reserved */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} APSR_Type;
/* APSR Register Definitions */
#define APSR_N_Pos 31U /*!< APSR: N Position */
#define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */
#define APSR_Z_Pos 30U /*!< APSR: Z Position */
#define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */
#define APSR_C_Pos 29U /*!< APSR: C Position */
#define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */
#define APSR_V_Pos 28U /*!< APSR: V Position */
#define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */
/**
\brief Union type to access the Interrupt Program Status Register (IPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} IPSR_Type;
/* IPSR Register Definitions */
#define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */
#define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */
/**
\brief Union type to access the Special-Purpose Program Status Registers (xPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:15; /*!< bit: 9..23 Reserved */
uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */
uint32_t _reserved1:3; /*!< bit: 25..27 Reserved */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} xPSR_Type;
/* xPSR Register Definitions */
#define xPSR_N_Pos 31U /*!< xPSR: N Position */
#define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */
#define xPSR_Z_Pos 30U /*!< xPSR: Z Position */
#define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */
#define xPSR_C_Pos 29U /*!< xPSR: C Position */
#define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */
#define xPSR_V_Pos 28U /*!< xPSR: V Position */
#define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */
#define xPSR_T_Pos 24U /*!< xPSR: T Position */
#define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */
#define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */
#define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */
/**
\brief Union type to access the Control Registers (CONTROL).
*/
typedef union
{
struct
{
uint32_t _reserved0:1; /*!< bit: 0 Reserved */
uint32_t SPSEL:1; /*!< bit: 1 Stack to be used */
uint32_t _reserved1:30; /*!< bit: 2..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} CONTROL_Type;
/* CONTROL Register Definitions */
#define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */
#define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */
/*@} end of group CMSIS_CORE */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC)
\brief Type definitions for the NVIC Registers
@{
*/
/**
\brief Structure type to access the Nested Vectored Interrupt Controller (NVIC).
*/
typedef struct
{
__IOM uint32_t ISER[1U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */
uint32_t RESERVED0[31U];
__IOM uint32_t ICER[1U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */
uint32_t RESERVED1[31U];
__IOM uint32_t ISPR[1U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */
uint32_t RESERVED2[31U];
__IOM uint32_t ICPR[1U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */
uint32_t RESERVED3[31U];
uint32_t RESERVED4[64U];
__IOM uint32_t IP[8U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register */
} NVIC_Type;
/*@} end of group CMSIS_NVIC */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SCB System Control Block (SCB)
\brief Type definitions for the System Control Block Registers
@{
*/
/**
\brief Structure type to access the System Control Block (SCB).
*/
typedef struct
{
__IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */
__IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */
uint32_t RESERVED0;
__IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */
__IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */
__IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */
uint32_t RESERVED1;
__IOM uint32_t SHP[2U]; /*!< Offset: 0x01C (R/W) System Handlers Priority Registers. [0] is RESERVED */
__IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */
} SCB_Type;
/* SCB CPUID Register Definitions */
#define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */
#define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */
#define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */
#define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */
#define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */
#define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */
#define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */
#define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */
#define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */
#define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */
/* SCB Interrupt Control State Register Definitions */
#define SCB_ICSR_NMIPENDSET_Pos 31U /*!< SCB ICSR: NMIPENDSET Position */
#define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */
#define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */
#define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */
#define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */
#define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */
#define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */
#define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */
#define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */
#define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */
#define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */
#define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */
#define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */
#define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */
#define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */
#define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */
#define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */
#define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */
/* SCB Application Interrupt and Reset Control Register Definitions */
#define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */
#define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */
#define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */
#define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */
#define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */
#define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */
#define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */
#define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */
#define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */
#define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */
/* SCB System Control Register Definitions */
#define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */
#define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */
#define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */
#define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */
#define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */
#define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */
/* SCB Configuration Control Register Definitions */
#define SCB_CCR_STKALIGN_Pos 9U /*!< SCB CCR: STKALIGN Position */
#define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */
#define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */
#define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */
/* SCB System Handler Control and State Register Definitions */
#define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */
#define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */
/*@} end of group CMSIS_SCB */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SysTick System Tick Timer (SysTick)
\brief Type definitions for the System Timer Registers.
@{
*/
/**
\brief Structure type to access the System Timer (SysTick).
*/
typedef struct
{
__IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */
__IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */
__IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */
__IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */
} SysTick_Type;
/* SysTick Control / Status Register Definitions */
#define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */
#define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */
#define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */
#define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */
#define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */
#define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */
#define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */
#define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */
/* SysTick Reload Register Definitions */
#define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */
#define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */
/* SysTick Current Register Definitions */
#define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */
#define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */
/* SysTick Calibration Register Definitions */
#define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */
#define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */
#define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */
#define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */
#define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */
#define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */
/*@} end of group CMSIS_SysTick */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug)
\brief Cortex-M0 Core Debug Registers (DCB registers, SHCSR, and DFSR) are only accessible over DAP and not via processor.
Therefore they are not covered by the Cortex-M0 header file.
@{
*/
/*@} end of group CMSIS_CoreDebug */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_core_bitfield Core register bit field macros
\brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk).
@{
*/
/**
\brief Mask and shift a bit field value for use in a register bit range.
\param[in] field Name of the register bit field.
\param[in] value Value of the bit field. This parameter is interpreted as an uint32_t type.
\return Masked and shifted value.
*/
#define _VAL2FLD(field, value) (((uint32_t)(value) << field ## _Pos) & field ## _Msk)
/**
\brief Mask and shift a register value to extract a bit filed value.
\param[in] field Name of the register bit field.
\param[in] value Value of register. This parameter is interpreted as an uint32_t type.
\return Masked and shifted bit field value.
*/
#define _FLD2VAL(field, value) (((uint32_t)(value) & field ## _Msk) >> field ## _Pos)
/*@} end of group CMSIS_core_bitfield */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_core_base Core Definitions
\brief Definitions for base addresses, unions, and structures.
@{
*/
/* Memory mapping of Core Hardware */
#define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */
#define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */
#define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */
#define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */
#define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */
#define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */
#define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */
/*@} */
/*******************************************************************************
* Hardware Abstraction Layer
Core Function Interface contains:
- Core NVIC Functions
- Core SysTick Functions
- Core Register Access Functions
******************************************************************************/
/**
\defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference
*/
/* ########################## NVIC functions #################################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_NVICFunctions NVIC Functions
\brief Functions that manage interrupts and exceptions via the NVIC.
@{
*/
#ifdef CMSIS_NVIC_VIRTUAL
#ifndef CMSIS_NVIC_VIRTUAL_HEADER_FILE
#define CMSIS_NVIC_VIRTUAL_HEADER_FILE "cmsis_nvic_virtual.h"
#endif
#include CMSIS_NVIC_VIRTUAL_HEADER_FILE
#else
#define NVIC_SetPriorityGrouping __NVIC_SetPriorityGrouping
#define NVIC_GetPriorityGrouping __NVIC_GetPriorityGrouping
#define NVIC_EnableIRQ __NVIC_EnableIRQ
#define NVIC_GetEnableIRQ __NVIC_GetEnableIRQ
#define NVIC_DisableIRQ __NVIC_DisableIRQ
#define NVIC_GetPendingIRQ __NVIC_GetPendingIRQ
#define NVIC_SetPendingIRQ __NVIC_SetPendingIRQ
#define NVIC_ClearPendingIRQ __NVIC_ClearPendingIRQ
/*#define NVIC_GetActive __NVIC_GetActive not available for Cortex-M0 */
#define NVIC_SetPriority __NVIC_SetPriority
#define NVIC_GetPriority __NVIC_GetPriority
#define NVIC_SystemReset __NVIC_SystemReset
#endif /* CMSIS_NVIC_VIRTUAL */
#ifdef CMSIS_VECTAB_VIRTUAL
#ifndef CMSIS_VECTAB_VIRTUAL_HEADER_FILE
#define CMSIS_VECTAB_VIRTUAL_HEADER_FILE "cmsis_vectab_virtual.h"
#endif
#include CMSIS_VECTAB_VIRTUAL_HEADER_FILE
#else
#define NVIC_SetVector __NVIC_SetVector
#define NVIC_GetVector __NVIC_GetVector
#endif /* (CMSIS_VECTAB_VIRTUAL) */
#define NVIC_USER_IRQ_OFFSET 16
/* The following EXC_RETURN values are saved the LR on exception entry */
#define EXC_RETURN_HANDLER (0xFFFFFFF1UL) /* return to Handler mode, uses MSP after return */
#define EXC_RETURN_THREAD_MSP (0xFFFFFFF9UL) /* return to Thread mode, uses MSP after return */
#define EXC_RETURN_THREAD_PSP (0xFFFFFFFDUL) /* return to Thread mode, uses PSP after return */
/* Interrupt Priorities are WORD accessible only under Armv6-M */
/* The following MACROS handle generation of the register offset and byte masks */
#define _BIT_SHIFT(IRQn) ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL)
#define _SHP_IDX(IRQn) ( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) )
#define _IP_IDX(IRQn) ( (((uint32_t)(int32_t)(IRQn)) >> 2UL) )
#define __NVIC_SetPriorityGrouping(X) (void)(X)
#define __NVIC_GetPriorityGrouping() (0U)
/**
\brief Enable Interrupt
\details Enables a device specific interrupt in the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
__COMPILER_BARRIER();
NVIC->ISER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
__COMPILER_BARRIER();
}
}
/**
\brief Get Interrupt Enable status
\details Returns a device specific interrupt enable status from the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\return 0 Interrupt is not enabled.
\return 1 Interrupt is enabled.
\note IRQn must not be negative.
*/
__STATIC_INLINE uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->ISER[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
}
else
{
return(0U);
}
}
/**
\brief Disable Interrupt
\details Disables a device specific interrupt in the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_DisableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ICER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
__DSB();
__ISB();
}
}
/**
\brief Get Pending Interrupt
\details Reads the NVIC pending register and returns the pending bit for the specified device specific interrupt.
\param [in] IRQn Device specific interrupt number.
\return 0 Interrupt status is not pending.
\return 1 Interrupt status is pending.
\note IRQn must not be negative.
*/
__STATIC_INLINE uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->ISPR[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
}
else
{
return(0U);
}
}
/**
\brief Set Pending Interrupt
\details Sets the pending bit of a device specific interrupt in the NVIC pending register.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_SetPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ISPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Clear Pending Interrupt
\details Clears the pending bit of a device specific interrupt in the NVIC pending register.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_ClearPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ICPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Set Interrupt Priority
\details Sets the priority of a device specific interrupt or a processor exception.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\param [in] priority Priority to set.
\note The priority cannot be set for every processor exception.
*/
__STATIC_INLINE void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->IP[_IP_IDX(IRQn)] = ((uint32_t)(NVIC->IP[_IP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
(((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
}
else
{
SCB->SHP[_SHP_IDX(IRQn)] = ((uint32_t)(SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
(((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
}
}
/**
\brief Get Interrupt Priority
\details Reads the priority of a device specific interrupt or a processor exception.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\return Interrupt Priority.
Value is aligned automatically to the implemented priority bits of the microcontroller.
*/
__STATIC_INLINE uint32_t __NVIC_GetPriority(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->IP[ _IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
}
else
{
return((uint32_t)(((SCB->SHP[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
}
}
/**
\brief Encode Priority
\details Encodes the priority for an interrupt with the given priority group,
preemptive priority value, and subpriority value.
In case of a conflict between priority grouping and available
priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set.
\param [in] PriorityGroup Used priority group.
\param [in] PreemptPriority Preemptive priority value (starting from 0).
\param [in] SubPriority Subpriority value (starting from 0).
\return Encoded priority. Value can be used in the function \ref NVIC_SetPriority().
*/
__STATIC_INLINE uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority)
{
uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
uint32_t PreemptPriorityBits;
uint32_t SubPriorityBits;
PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
return (
((PreemptPriority & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL)) << SubPriorityBits) |
((SubPriority & (uint32_t)((1UL << (SubPriorityBits )) - 1UL)))
);
}
/**
\brief Decode Priority
\details Decodes an interrupt priority value with a given priority group to
preemptive priority value and subpriority value.
In case of a conflict between priority grouping and available
priority bits (__NVIC_PRIO_BITS) the smallest possible priority group is set.
\param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority().
\param [in] PriorityGroup Used priority group.
\param [out] pPreemptPriority Preemptive priority value (starting from 0).
\param [out] pSubPriority Subpriority value (starting from 0).
*/
__STATIC_INLINE void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* const pPreemptPriority, uint32_t* const pSubPriority)
{
uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
uint32_t PreemptPriorityBits;
uint32_t SubPriorityBits;
PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
*pPreemptPriority = (Priority >> SubPriorityBits) & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL);
*pSubPriority = (Priority ) & (uint32_t)((1UL << (SubPriorityBits )) - 1UL);
}
/**
\brief Set Interrupt Vector
\details Sets an interrupt vector in SRAM based interrupt vector table.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
Address 0 must be mapped to SRAM.
\param [in] IRQn Interrupt number
\param [in] vector Address of interrupt handler function
*/
__STATIC_INLINE void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector)
{
uint32_t *vectors = (uint32_t *)(NVIC_USER_IRQ_OFFSET << 2); /* point to 1st user interrupt */
*(vectors + (int32_t)IRQn) = vector; /* use pointer arithmetic to access vector */
/* ARM Application Note 321 states that the M0 does not require the architectural barrier */
}
/**
\brief Get Interrupt Vector
\details Reads an interrupt vector from interrupt vector table.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\return Address of interrupt handler function
*/
__STATIC_INLINE uint32_t __NVIC_GetVector(IRQn_Type IRQn)
{
uint32_t *vectors = (uint32_t *)(NVIC_USER_IRQ_OFFSET << 2); /* point to 1st user interrupt */
return *(vectors + (int32_t)IRQn); /* use pointer arithmetic to access vector */
}
/**
\brief System Reset
\details Initiates a system reset request to reset the MCU.
*/
__NO_RETURN __STATIC_INLINE void __NVIC_SystemReset(void)
{
__DSB(); /* Ensure all outstanding memory accesses included
buffered write are completed before reset */
SCB->AIRCR = ((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) |
SCB_AIRCR_SYSRESETREQ_Msk);
__DSB(); /* Ensure completion of memory access */
for(;;) /* wait until reset */
{
__NOP();
}
}
/*@} end of CMSIS_Core_NVICFunctions */
/* ########################## FPU functions #################################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_FpuFunctions FPU Functions
\brief Function that provides FPU type.
@{
*/
/**
\brief get FPU type
\details returns the FPU type
\returns
- \b 0: No FPU
- \b 1: Single precision FPU
- \b 2: Double + Single precision FPU
*/
__STATIC_INLINE uint32_t SCB_GetFPUType(void)
{
return 0U; /* No FPU */
}
/*@} end of CMSIS_Core_FpuFunctions */
/* ################################## SysTick function ############################################ */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_SysTickFunctions SysTick Functions
\brief Functions that configure the System.
@{
*/
#if defined (__Vendor_SysTickConfig) && (__Vendor_SysTickConfig == 0U)
/**
\brief System Tick Configuration
\details Initializes the System Timer and its interrupt, and starts the System Tick Timer.
Counter is in free running mode to generate periodic interrupts.
\param [in] ticks Number of ticks between two interrupts.
\return 0 Function succeeded.
\return 1 Function failed.
\note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the
function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b>
must contain a vendor-specific implementation of this function.
*/
__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
{
if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk)
{
return (1UL); /* Reload value impossible */
}
SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */
NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */
SysTick->VAL = 0UL; /* Load the SysTick Counter Value */
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
SysTick_CTRL_TICKINT_Msk |
SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
return (0UL); /* Function successful */
}
#endif
/*@} end of CMSIS_Core_SysTickFunctions */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM0_H_DEPENDANT */
#endif /* __CMSIS_GENERIC */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,979 @@
/**************************************************************************//**
* @file core_cm1.h
* @brief CMSIS Cortex-M1 Core Peripheral Access Layer Header File
* @version V1.0.1
* @date 12. November 2018
******************************************************************************/
/*
* Copyright (c) 2009-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef __CORE_CM1_H_GENERIC
#define __CORE_CM1_H_GENERIC
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
\page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions
CMSIS violates the following MISRA-C:2004 rules:
\li Required Rule 8.5, object/function definition in header file.<br>
Function definitions in header files are used to allow 'inlining'.
\li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
Unions are used for effective representation of core registers.
\li Advisory Rule 19.7, Function-like macro defined.<br>
Function-like macros are used to allow more efficient code.
*/
/*******************************************************************************
* CMSIS definitions
******************************************************************************/
/**
\ingroup Cortex_M1
@{
*/
#include "cmsis_version.h"
/* CMSIS CM1 definitions */
#define __CM1_CMSIS_VERSION_MAIN (__CM_CMSIS_VERSION_MAIN) /*!< \deprecated [31:16] CMSIS HAL main version */
#define __CM1_CMSIS_VERSION_SUB (__CM_CMSIS_VERSION_SUB) /*!< \deprecated [15:0] CMSIS HAL sub version */
#define __CM1_CMSIS_VERSION ((__CM1_CMSIS_VERSION_MAIN << 16U) | \
__CM1_CMSIS_VERSION_SUB ) /*!< \deprecated CMSIS HAL version number */
#define __CORTEX_M (1U) /*!< Cortex-M Core */
/** __FPU_USED indicates whether an FPU is used or not.
This core does not support an FPU at all
*/
#define __FPU_USED 0U
#if defined ( __CC_ARM )
#if defined __TARGET_FPU_VFP
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
#if defined __ARM_FP
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __GNUC__ )
#if defined (__VFP_FP__) && !defined(__SOFTFP__)
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __ICCARM__ )
#if defined __ARMVFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TI_ARM__ )
#if defined __TI_VFP_SUPPORT__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TASKING__ )
#if defined __FPU_VFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __CSMC__ )
#if ( __CSMC__ & 0x400U)
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#endif
#include "cmsis_compiler.h" /* CMSIS compiler specific defines */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM1_H_GENERIC */
#ifndef __CMSIS_GENERIC
#ifndef __CORE_CM1_H_DEPENDANT
#define __CORE_CM1_H_DEPENDANT
#ifdef __cplusplus
extern "C" {
#endif
/* check device defines and use defaults */
#if defined __CHECK_DEVICE_DEFINES
#ifndef __CM1_REV
#define __CM1_REV 0x0100U
#warning "__CM1_REV not defined in device header file; using default!"
#endif
#ifndef __NVIC_PRIO_BITS
#define __NVIC_PRIO_BITS 2U
#warning "__NVIC_PRIO_BITS not defined in device header file; using default!"
#endif
#ifndef __Vendor_SysTickConfig
#define __Vendor_SysTickConfig 0U
#warning "__Vendor_SysTickConfig not defined in device header file; using default!"
#endif
#endif
/* IO definitions (access restrictions to peripheral registers) */
/**
\defgroup CMSIS_glob_defs CMSIS Global Defines
<strong>IO Type Qualifiers</strong> are used
\li to specify the access to peripheral variables.
\li for automatic generation of peripheral register debug information.
*/
#ifdef __cplusplus
#define __I volatile /*!< Defines 'read only' permissions */
#else
#define __I volatile const /*!< Defines 'read only' permissions */
#endif
#define __O volatile /*!< Defines 'write only' permissions */
#define __IO volatile /*!< Defines 'read / write' permissions */
/* following defines should be used for structure members */
#define __IM volatile const /*! Defines 'read only' structure member permissions */
#define __OM volatile /*! Defines 'write only' structure member permissions */
#define __IOM volatile /*! Defines 'read / write' structure member permissions */
/*@} end of group Cortex_M1 */
/*******************************************************************************
* Register Abstraction
Core Register contain:
- Core Register
- Core NVIC Register
- Core SCB Register
- Core SysTick Register
******************************************************************************/
/**
\defgroup CMSIS_core_register Defines and Type Definitions
\brief Type definitions and defines for Cortex-M processor based devices.
*/
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_CORE Status and Control Registers
\brief Core Register type definitions.
@{
*/
/**
\brief Union type to access the Application Program Status Register (APSR).
*/
typedef union
{
struct
{
uint32_t _reserved0:28; /*!< bit: 0..27 Reserved */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} APSR_Type;
/* APSR Register Definitions */
#define APSR_N_Pos 31U /*!< APSR: N Position */
#define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */
#define APSR_Z_Pos 30U /*!< APSR: Z Position */
#define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */
#define APSR_C_Pos 29U /*!< APSR: C Position */
#define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */
#define APSR_V_Pos 28U /*!< APSR: V Position */
#define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */
/**
\brief Union type to access the Interrupt Program Status Register (IPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} IPSR_Type;
/* IPSR Register Definitions */
#define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */
#define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */
/**
\brief Union type to access the Special-Purpose Program Status Registers (xPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:15; /*!< bit: 9..23 Reserved */
uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */
uint32_t _reserved1:3; /*!< bit: 25..27 Reserved */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} xPSR_Type;
/* xPSR Register Definitions */
#define xPSR_N_Pos 31U /*!< xPSR: N Position */
#define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */
#define xPSR_Z_Pos 30U /*!< xPSR: Z Position */
#define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */
#define xPSR_C_Pos 29U /*!< xPSR: C Position */
#define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */
#define xPSR_V_Pos 28U /*!< xPSR: V Position */
#define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */
#define xPSR_T_Pos 24U /*!< xPSR: T Position */
#define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */
#define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */
#define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */
/**
\brief Union type to access the Control Registers (CONTROL).
*/
typedef union
{
struct
{
uint32_t _reserved0:1; /*!< bit: 0 Reserved */
uint32_t SPSEL:1; /*!< bit: 1 Stack to be used */
uint32_t _reserved1:30; /*!< bit: 2..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} CONTROL_Type;
/* CONTROL Register Definitions */
#define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */
#define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */
/*@} end of group CMSIS_CORE */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC)
\brief Type definitions for the NVIC Registers
@{
*/
/**
\brief Structure type to access the Nested Vectored Interrupt Controller (NVIC).
*/
typedef struct
{
__IOM uint32_t ISER[1U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */
uint32_t RESERVED0[31U];
__IOM uint32_t ICER[1U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */
uint32_t RSERVED1[31U];
__IOM uint32_t ISPR[1U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */
uint32_t RESERVED2[31U];
__IOM uint32_t ICPR[1U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */
uint32_t RESERVED3[31U];
uint32_t RESERVED4[64U];
__IOM uint32_t IP[8U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register */
} NVIC_Type;
/*@} end of group CMSIS_NVIC */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SCB System Control Block (SCB)
\brief Type definitions for the System Control Block Registers
@{
*/
/**
\brief Structure type to access the System Control Block (SCB).
*/
typedef struct
{
__IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */
__IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */
uint32_t RESERVED0;
__IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */
__IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */
__IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */
uint32_t RESERVED1;
__IOM uint32_t SHP[2U]; /*!< Offset: 0x01C (R/W) System Handlers Priority Registers. [0] is RESERVED */
__IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */
} SCB_Type;
/* SCB CPUID Register Definitions */
#define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */
#define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */
#define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */
#define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */
#define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */
#define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */
#define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */
#define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */
#define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */
#define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */
/* SCB Interrupt Control State Register Definitions */
#define SCB_ICSR_NMIPENDSET_Pos 31U /*!< SCB ICSR: NMIPENDSET Position */
#define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */
#define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */
#define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */
#define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */
#define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */
#define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */
#define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */
#define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */
#define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */
#define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */
#define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */
#define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */
#define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */
#define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */
#define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */
#define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */
#define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */
/* SCB Application Interrupt and Reset Control Register Definitions */
#define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */
#define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */
#define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */
#define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */
#define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */
#define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */
#define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */
#define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */
#define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */
#define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */
/* SCB System Control Register Definitions */
#define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */
#define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */
#define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */
#define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */
#define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */
#define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */
/* SCB Configuration Control Register Definitions */
#define SCB_CCR_STKALIGN_Pos 9U /*!< SCB CCR: STKALIGN Position */
#define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */
#define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */
#define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */
/* SCB System Handler Control and State Register Definitions */
#define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */
#define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */
/*@} end of group CMSIS_SCB */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SCnSCB System Controls not in SCB (SCnSCB)
\brief Type definitions for the System Control and ID Register not in the SCB
@{
*/
/**
\brief Structure type to access the System Control and ID Register not in the SCB.
*/
typedef struct
{
uint32_t RESERVED0[2U];
__IOM uint32_t ACTLR; /*!< Offset: 0x008 (R/W) Auxiliary Control Register */
} SCnSCB_Type;
/* Auxiliary Control Register Definitions */
#define SCnSCB_ACTLR_ITCMUAEN_Pos 4U /*!< ACTLR: Instruction TCM Upper Alias Enable Position */
#define SCnSCB_ACTLR_ITCMUAEN_Msk (1UL << SCnSCB_ACTLR_ITCMUAEN_Pos) /*!< ACTLR: Instruction TCM Upper Alias Enable Mask */
#define SCnSCB_ACTLR_ITCMLAEN_Pos 3U /*!< ACTLR: Instruction TCM Lower Alias Enable Position */
#define SCnSCB_ACTLR_ITCMLAEN_Msk (1UL << SCnSCB_ACTLR_ITCMLAEN_Pos) /*!< ACTLR: Instruction TCM Lower Alias Enable Mask */
/*@} end of group CMSIS_SCnotSCB */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SysTick System Tick Timer (SysTick)
\brief Type definitions for the System Timer Registers.
@{
*/
/**
\brief Structure type to access the System Timer (SysTick).
*/
typedef struct
{
__IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */
__IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */
__IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */
__IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */
} SysTick_Type;
/* SysTick Control / Status Register Definitions */
#define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */
#define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */
#define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */
#define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */
#define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */
#define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */
#define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */
#define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */
/* SysTick Reload Register Definitions */
#define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */
#define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */
/* SysTick Current Register Definitions */
#define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */
#define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */
/* SysTick Calibration Register Definitions */
#define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */
#define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */
#define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */
#define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */
#define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */
#define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */
/*@} end of group CMSIS_SysTick */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug)
\brief Cortex-M1 Core Debug Registers (DCB registers, SHCSR, and DFSR) are only accessible over DAP and not via processor.
Therefore they are not covered by the Cortex-M1 header file.
@{
*/
/*@} end of group CMSIS_CoreDebug */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_core_bitfield Core register bit field macros
\brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk).
@{
*/
/**
\brief Mask and shift a bit field value for use in a register bit range.
\param[in] field Name of the register bit field.
\param[in] value Value of the bit field. This parameter is interpreted as an uint32_t type.
\return Masked and shifted value.
*/
#define _VAL2FLD(field, value) (((uint32_t)(value) << field ## _Pos) & field ## _Msk)
/**
\brief Mask and shift a register value to extract a bit filed value.
\param[in] field Name of the register bit field.
\param[in] value Value of register. This parameter is interpreted as an uint32_t type.
\return Masked and shifted bit field value.
*/
#define _FLD2VAL(field, value) (((uint32_t)(value) & field ## _Msk) >> field ## _Pos)
/*@} end of group CMSIS_core_bitfield */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_core_base Core Definitions
\brief Definitions for base addresses, unions, and structures.
@{
*/
/* Memory mapping of Core Hardware */
#define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */
#define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */
#define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */
#define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */
#define SCnSCB ((SCnSCB_Type *) SCS_BASE ) /*!< System control Register not in SCB */
#define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */
#define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */
#define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */
/*@} */
/*******************************************************************************
* Hardware Abstraction Layer
Core Function Interface contains:
- Core NVIC Functions
- Core SysTick Functions
- Core Register Access Functions
******************************************************************************/
/**
\defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference
*/
/* ########################## NVIC functions #################################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_NVICFunctions NVIC Functions
\brief Functions that manage interrupts and exceptions via the NVIC.
@{
*/
#ifdef CMSIS_NVIC_VIRTUAL
#ifndef CMSIS_NVIC_VIRTUAL_HEADER_FILE
#define CMSIS_NVIC_VIRTUAL_HEADER_FILE "cmsis_nvic_virtual.h"
#endif
#include CMSIS_NVIC_VIRTUAL_HEADER_FILE
#else
#define NVIC_SetPriorityGrouping __NVIC_SetPriorityGrouping
#define NVIC_GetPriorityGrouping __NVIC_GetPriorityGrouping
#define NVIC_EnableIRQ __NVIC_EnableIRQ
#define NVIC_GetEnableIRQ __NVIC_GetEnableIRQ
#define NVIC_DisableIRQ __NVIC_DisableIRQ
#define NVIC_GetPendingIRQ __NVIC_GetPendingIRQ
#define NVIC_SetPendingIRQ __NVIC_SetPendingIRQ
#define NVIC_ClearPendingIRQ __NVIC_ClearPendingIRQ
/*#define NVIC_GetActive __NVIC_GetActive not available for Cortex-M1 */
#define NVIC_SetPriority __NVIC_SetPriority
#define NVIC_GetPriority __NVIC_GetPriority
#define NVIC_SystemReset __NVIC_SystemReset
#endif /* CMSIS_NVIC_VIRTUAL */
#ifdef CMSIS_VECTAB_VIRTUAL
#ifndef CMSIS_VECTAB_VIRTUAL_HEADER_FILE
#define CMSIS_VECTAB_VIRTUAL_HEADER_FILE "cmsis_vectab_virtual.h"
#endif
#include CMSIS_VECTAB_VIRTUAL_HEADER_FILE
#else
#define NVIC_SetVector __NVIC_SetVector
#define NVIC_GetVector __NVIC_GetVector
#endif /* (CMSIS_VECTAB_VIRTUAL) */
#define NVIC_USER_IRQ_OFFSET 16
/* The following EXC_RETURN values are saved the LR on exception entry */
#define EXC_RETURN_HANDLER (0xFFFFFFF1UL) /* return to Handler mode, uses MSP after return */
#define EXC_RETURN_THREAD_MSP (0xFFFFFFF9UL) /* return to Thread mode, uses MSP after return */
#define EXC_RETURN_THREAD_PSP (0xFFFFFFFDUL) /* return to Thread mode, uses PSP after return */
/* Interrupt Priorities are WORD accessible only under Armv6-M */
/* The following MACROS handle generation of the register offset and byte masks */
#define _BIT_SHIFT(IRQn) ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL)
#define _SHP_IDX(IRQn) ( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) )
#define _IP_IDX(IRQn) ( (((uint32_t)(int32_t)(IRQn)) >> 2UL) )
#define __NVIC_SetPriorityGrouping(X) (void)(X)
#define __NVIC_GetPriorityGrouping() (0U)
/**
\brief Enable Interrupt
\details Enables a device specific interrupt in the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
__COMPILER_BARRIER();
NVIC->ISER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
__COMPILER_BARRIER();
}
}
/**
\brief Get Interrupt Enable status
\details Returns a device specific interrupt enable status from the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\return 0 Interrupt is not enabled.
\return 1 Interrupt is enabled.
\note IRQn must not be negative.
*/
__STATIC_INLINE uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->ISER[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
}
else
{
return(0U);
}
}
/**
\brief Disable Interrupt
\details Disables a device specific interrupt in the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_DisableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ICER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
__DSB();
__ISB();
}
}
/**
\brief Get Pending Interrupt
\details Reads the NVIC pending register and returns the pending bit for the specified device specific interrupt.
\param [in] IRQn Device specific interrupt number.
\return 0 Interrupt status is not pending.
\return 1 Interrupt status is pending.
\note IRQn must not be negative.
*/
__STATIC_INLINE uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->ISPR[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
}
else
{
return(0U);
}
}
/**
\brief Set Pending Interrupt
\details Sets the pending bit of a device specific interrupt in the NVIC pending register.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_SetPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ISPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Clear Pending Interrupt
\details Clears the pending bit of a device specific interrupt in the NVIC pending register.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_ClearPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ICPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Set Interrupt Priority
\details Sets the priority of a device specific interrupt or a processor exception.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\param [in] priority Priority to set.
\note The priority cannot be set for every processor exception.
*/
__STATIC_INLINE void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->IP[_IP_IDX(IRQn)] = ((uint32_t)(NVIC->IP[_IP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
(((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
}
else
{
SCB->SHP[_SHP_IDX(IRQn)] = ((uint32_t)(SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
(((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
}
}
/**
\brief Get Interrupt Priority
\details Reads the priority of a device specific interrupt or a processor exception.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\return Interrupt Priority.
Value is aligned automatically to the implemented priority bits of the microcontroller.
*/
__STATIC_INLINE uint32_t __NVIC_GetPriority(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->IP[ _IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
}
else
{
return((uint32_t)(((SCB->SHP[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
}
}
/**
\brief Encode Priority
\details Encodes the priority for an interrupt with the given priority group,
preemptive priority value, and subpriority value.
In case of a conflict between priority grouping and available
priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set.
\param [in] PriorityGroup Used priority group.
\param [in] PreemptPriority Preemptive priority value (starting from 0).
\param [in] SubPriority Subpriority value (starting from 0).
\return Encoded priority. Value can be used in the function \ref NVIC_SetPriority().
*/
__STATIC_INLINE uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority)
{
uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
uint32_t PreemptPriorityBits;
uint32_t SubPriorityBits;
PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
return (
((PreemptPriority & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL)) << SubPriorityBits) |
((SubPriority & (uint32_t)((1UL << (SubPriorityBits )) - 1UL)))
);
}
/**
\brief Decode Priority
\details Decodes an interrupt priority value with a given priority group to
preemptive priority value and subpriority value.
In case of a conflict between priority grouping and available
priority bits (__NVIC_PRIO_BITS) the smallest possible priority group is set.
\param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority().
\param [in] PriorityGroup Used priority group.
\param [out] pPreemptPriority Preemptive priority value (starting from 0).
\param [out] pSubPriority Subpriority value (starting from 0).
*/
__STATIC_INLINE void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* const pPreemptPriority, uint32_t* const pSubPriority)
{
uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
uint32_t PreemptPriorityBits;
uint32_t SubPriorityBits;
PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
*pPreemptPriority = (Priority >> SubPriorityBits) & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL);
*pSubPriority = (Priority ) & (uint32_t)((1UL << (SubPriorityBits )) - 1UL);
}
/**
\brief Set Interrupt Vector
\details Sets an interrupt vector in SRAM based interrupt vector table.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
Address 0 must be mapped to SRAM.
\param [in] IRQn Interrupt number
\param [in] vector Address of interrupt handler function
*/
__STATIC_INLINE void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector)
{
uint32_t *vectors = (uint32_t *)0x0U;
vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET] = vector;
/* ARM Application Note 321 states that the M1 does not require the architectural barrier */
}
/**
\brief Get Interrupt Vector
\details Reads an interrupt vector from interrupt vector table.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\return Address of interrupt handler function
*/
__STATIC_INLINE uint32_t __NVIC_GetVector(IRQn_Type IRQn)
{
uint32_t *vectors = (uint32_t *)0x0U;
return vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET];
}
/**
\brief System Reset
\details Initiates a system reset request to reset the MCU.
*/
__NO_RETURN __STATIC_INLINE void __NVIC_SystemReset(void)
{
__DSB(); /* Ensure all outstanding memory accesses included
buffered write are completed before reset */
SCB->AIRCR = ((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) |
SCB_AIRCR_SYSRESETREQ_Msk);
__DSB(); /* Ensure completion of memory access */
for(;;) /* wait until reset */
{
__NOP();
}
}
/*@} end of CMSIS_Core_NVICFunctions */
/* ########################## FPU functions #################################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_FpuFunctions FPU Functions
\brief Function that provides FPU type.
@{
*/
/**
\brief get FPU type
\details returns the FPU type
\returns
- \b 0: No FPU
- \b 1: Single precision FPU
- \b 2: Double + Single precision FPU
*/
__STATIC_INLINE uint32_t SCB_GetFPUType(void)
{
return 0U; /* No FPU */
}
/*@} end of CMSIS_Core_FpuFunctions */
/* ################################## SysTick function ############################################ */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_SysTickFunctions SysTick Functions
\brief Functions that configure the System.
@{
*/
#if defined (__Vendor_SysTickConfig) && (__Vendor_SysTickConfig == 0U)
/**
\brief System Tick Configuration
\details Initializes the System Timer and its interrupt, and starts the System Tick Timer.
Counter is in free running mode to generate periodic interrupts.
\param [in] ticks Number of ticks between two interrupts.
\return 0 Function succeeded.
\return 1 Function failed.
\note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the
function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b>
must contain a vendor-specific implementation of this function.
*/
__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
{
if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk)
{
return (1UL); /* Reload value impossible */
}
SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */
NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */
SysTick->VAL = 0UL; /* Load the SysTick Counter Value */
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
SysTick_CTRL_TICKINT_Msk |
SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
return (0UL); /* Function successful */
}
#endif
/*@} end of CMSIS_Core_SysTickFunctions */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM1_H_DEPENDANT */
#endif /* __CMSIS_GENERIC */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,275 @@
/******************************************************************************
* @file mpu_armv7.h
* @brief CMSIS MPU API for Armv7-M MPU
* @version V5.1.2
* @date 25. May 2020
******************************************************************************/
/*
* Copyright (c) 2017-2020 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef ARM_MPU_ARMV7_H
#define ARM_MPU_ARMV7_H
#define ARM_MPU_REGION_SIZE_32B ((uint8_t)0x04U) ///!< MPU Region Size 32 Bytes
#define ARM_MPU_REGION_SIZE_64B ((uint8_t)0x05U) ///!< MPU Region Size 64 Bytes
#define ARM_MPU_REGION_SIZE_128B ((uint8_t)0x06U) ///!< MPU Region Size 128 Bytes
#define ARM_MPU_REGION_SIZE_256B ((uint8_t)0x07U) ///!< MPU Region Size 256 Bytes
#define ARM_MPU_REGION_SIZE_512B ((uint8_t)0x08U) ///!< MPU Region Size 512 Bytes
#define ARM_MPU_REGION_SIZE_1KB ((uint8_t)0x09U) ///!< MPU Region Size 1 KByte
#define ARM_MPU_REGION_SIZE_2KB ((uint8_t)0x0AU) ///!< MPU Region Size 2 KBytes
#define ARM_MPU_REGION_SIZE_4KB ((uint8_t)0x0BU) ///!< MPU Region Size 4 KBytes
#define ARM_MPU_REGION_SIZE_8KB ((uint8_t)0x0CU) ///!< MPU Region Size 8 KBytes
#define ARM_MPU_REGION_SIZE_16KB ((uint8_t)0x0DU) ///!< MPU Region Size 16 KBytes
#define ARM_MPU_REGION_SIZE_32KB ((uint8_t)0x0EU) ///!< MPU Region Size 32 KBytes
#define ARM_MPU_REGION_SIZE_64KB ((uint8_t)0x0FU) ///!< MPU Region Size 64 KBytes
#define ARM_MPU_REGION_SIZE_128KB ((uint8_t)0x10U) ///!< MPU Region Size 128 KBytes
#define ARM_MPU_REGION_SIZE_256KB ((uint8_t)0x11U) ///!< MPU Region Size 256 KBytes
#define ARM_MPU_REGION_SIZE_512KB ((uint8_t)0x12U) ///!< MPU Region Size 512 KBytes
#define ARM_MPU_REGION_SIZE_1MB ((uint8_t)0x13U) ///!< MPU Region Size 1 MByte
#define ARM_MPU_REGION_SIZE_2MB ((uint8_t)0x14U) ///!< MPU Region Size 2 MBytes
#define ARM_MPU_REGION_SIZE_4MB ((uint8_t)0x15U) ///!< MPU Region Size 4 MBytes
#define ARM_MPU_REGION_SIZE_8MB ((uint8_t)0x16U) ///!< MPU Region Size 8 MBytes
#define ARM_MPU_REGION_SIZE_16MB ((uint8_t)0x17U) ///!< MPU Region Size 16 MBytes
#define ARM_MPU_REGION_SIZE_32MB ((uint8_t)0x18U) ///!< MPU Region Size 32 MBytes
#define ARM_MPU_REGION_SIZE_64MB ((uint8_t)0x19U) ///!< MPU Region Size 64 MBytes
#define ARM_MPU_REGION_SIZE_128MB ((uint8_t)0x1AU) ///!< MPU Region Size 128 MBytes
#define ARM_MPU_REGION_SIZE_256MB ((uint8_t)0x1BU) ///!< MPU Region Size 256 MBytes
#define ARM_MPU_REGION_SIZE_512MB ((uint8_t)0x1CU) ///!< MPU Region Size 512 MBytes
#define ARM_MPU_REGION_SIZE_1GB ((uint8_t)0x1DU) ///!< MPU Region Size 1 GByte
#define ARM_MPU_REGION_SIZE_2GB ((uint8_t)0x1EU) ///!< MPU Region Size 2 GBytes
#define ARM_MPU_REGION_SIZE_4GB ((uint8_t)0x1FU) ///!< MPU Region Size 4 GBytes
#define ARM_MPU_AP_NONE 0U ///!< MPU Access Permission no access
#define ARM_MPU_AP_PRIV 1U ///!< MPU Access Permission privileged access only
#define ARM_MPU_AP_URO 2U ///!< MPU Access Permission unprivileged access read-only
#define ARM_MPU_AP_FULL 3U ///!< MPU Access Permission full access
#define ARM_MPU_AP_PRO 5U ///!< MPU Access Permission privileged access read-only
#define ARM_MPU_AP_RO 6U ///!< MPU Access Permission read-only access
/** MPU Region Base Address Register Value
*
* \param Region The region to be configured, number 0 to 15.
* \param BaseAddress The base address for the region.
*/
#define ARM_MPU_RBAR(Region, BaseAddress) \
(((BaseAddress) & MPU_RBAR_ADDR_Msk) | \
((Region) & MPU_RBAR_REGION_Msk) | \
(MPU_RBAR_VALID_Msk))
/**
* MPU Memory Access Attributes
*
* \param TypeExtField Type extension field, allows you to configure memory access type, for example strongly ordered, peripheral.
* \param IsShareable Region is shareable between multiple bus masters.
* \param IsCacheable Region is cacheable, i.e. its value may be kept in cache.
* \param IsBufferable Region is bufferable, i.e. using write-back caching. Cacheable but non-bufferable regions use write-through policy.
*/
#define ARM_MPU_ACCESS_(TypeExtField, IsShareable, IsCacheable, IsBufferable) \
((((TypeExtField) << MPU_RASR_TEX_Pos) & MPU_RASR_TEX_Msk) | \
(((IsShareable) << MPU_RASR_S_Pos) & MPU_RASR_S_Msk) | \
(((IsCacheable) << MPU_RASR_C_Pos) & MPU_RASR_C_Msk) | \
(((IsBufferable) << MPU_RASR_B_Pos) & MPU_RASR_B_Msk))
/**
* MPU Region Attribute and Size Register Value
*
* \param DisableExec Instruction access disable bit, 1= disable instruction fetches.
* \param AccessPermission Data access permissions, allows you to configure read/write access for User and Privileged mode.
* \param AccessAttributes Memory access attribution, see \ref ARM_MPU_ACCESS_.
* \param SubRegionDisable Sub-region disable field.
* \param Size Region size of the region to be configured, for example 4K, 8K.
*/
#define ARM_MPU_RASR_EX(DisableExec, AccessPermission, AccessAttributes, SubRegionDisable, Size) \
((((DisableExec) << MPU_RASR_XN_Pos) & MPU_RASR_XN_Msk) | \
(((AccessPermission) << MPU_RASR_AP_Pos) & MPU_RASR_AP_Msk) | \
(((AccessAttributes) & (MPU_RASR_TEX_Msk | MPU_RASR_S_Msk | MPU_RASR_C_Msk | MPU_RASR_B_Msk))) | \
(((SubRegionDisable) << MPU_RASR_SRD_Pos) & MPU_RASR_SRD_Msk) | \
(((Size) << MPU_RASR_SIZE_Pos) & MPU_RASR_SIZE_Msk) | \
(((MPU_RASR_ENABLE_Msk))))
/**
* MPU Region Attribute and Size Register Value
*
* \param DisableExec Instruction access disable bit, 1= disable instruction fetches.
* \param AccessPermission Data access permissions, allows you to configure read/write access for User and Privileged mode.
* \param TypeExtField Type extension field, allows you to configure memory access type, for example strongly ordered, peripheral.
* \param IsShareable Region is shareable between multiple bus masters.
* \param IsCacheable Region is cacheable, i.e. its value may be kept in cache.
* \param IsBufferable Region is bufferable, i.e. using write-back caching. Cacheable but non-bufferable regions use write-through policy.
* \param SubRegionDisable Sub-region disable field.
* \param Size Region size of the region to be configured, for example 4K, 8K.
*/
#define ARM_MPU_RASR(DisableExec, AccessPermission, TypeExtField, IsShareable, IsCacheable, IsBufferable, SubRegionDisable, Size) \
ARM_MPU_RASR_EX(DisableExec, AccessPermission, ARM_MPU_ACCESS_(TypeExtField, IsShareable, IsCacheable, IsBufferable), SubRegionDisable, Size)
/**
* MPU Memory Access Attribute for strongly ordered memory.
* - TEX: 000b
* - Shareable
* - Non-cacheable
* - Non-bufferable
*/
#define ARM_MPU_ACCESS_ORDERED ARM_MPU_ACCESS_(0U, 1U, 0U, 0U)
/**
* MPU Memory Access Attribute for device memory.
* - TEX: 000b (if shareable) or 010b (if non-shareable)
* - Shareable or non-shareable
* - Non-cacheable
* - Bufferable (if shareable) or non-bufferable (if non-shareable)
*
* \param IsShareable Configures the device memory as shareable or non-shareable.
*/
#define ARM_MPU_ACCESS_DEVICE(IsShareable) ((IsShareable) ? ARM_MPU_ACCESS_(0U, 1U, 0U, 1U) : ARM_MPU_ACCESS_(2U, 0U, 0U, 0U))
/**
* MPU Memory Access Attribute for normal memory.
* - TEX: 1BBb (reflecting outer cacheability rules)
* - Shareable or non-shareable
* - Cacheable or non-cacheable (reflecting inner cacheability rules)
* - Bufferable or non-bufferable (reflecting inner cacheability rules)
*
* \param OuterCp Configures the outer cache policy.
* \param InnerCp Configures the inner cache policy.
* \param IsShareable Configures the memory as shareable or non-shareable.
*/
#define ARM_MPU_ACCESS_NORMAL(OuterCp, InnerCp, IsShareable) ARM_MPU_ACCESS_((4U | (OuterCp)), IsShareable, ((InnerCp) >> 1U), ((InnerCp) & 1U))
/**
* MPU Memory Access Attribute non-cacheable policy.
*/
#define ARM_MPU_CACHEP_NOCACHE 0U
/**
* MPU Memory Access Attribute write-back, write and read allocate policy.
*/
#define ARM_MPU_CACHEP_WB_WRA 1U
/**
* MPU Memory Access Attribute write-through, no write allocate policy.
*/
#define ARM_MPU_CACHEP_WT_NWA 2U
/**
* MPU Memory Access Attribute write-back, no write allocate policy.
*/
#define ARM_MPU_CACHEP_WB_NWA 3U
/**
* Struct for a single MPU Region
*/
typedef struct {
uint32_t RBAR; //!< The region base address register value (RBAR)
uint32_t RASR; //!< The region attribute and size register value (RASR) \ref MPU_RASR
} ARM_MPU_Region_t;
/** Enable the MPU.
* \param MPU_Control Default access permissions for unconfigured regions.
*/
__STATIC_INLINE void ARM_MPU_Enable(uint32_t MPU_Control)
{
__DMB();
MPU->CTRL = MPU_Control | MPU_CTRL_ENABLE_Msk;
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
#endif
__DSB();
__ISB();
}
/** Disable the MPU.
*/
__STATIC_INLINE void ARM_MPU_Disable(void)
{
__DMB();
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk;
#endif
MPU->CTRL &= ~MPU_CTRL_ENABLE_Msk;
__DSB();
__ISB();
}
/** Clear and disable the given MPU region.
* \param rnr Region number to be cleared.
*/
__STATIC_INLINE void ARM_MPU_ClrRegion(uint32_t rnr)
{
MPU->RNR = rnr;
MPU->RASR = 0U;
}
/** Configure an MPU region.
* \param rbar Value for RBAR register.
* \param rasr Value for RASR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegion(uint32_t rbar, uint32_t rasr)
{
MPU->RBAR = rbar;
MPU->RASR = rasr;
}
/** Configure the given MPU region.
* \param rnr Region number to be configured.
* \param rbar Value for RBAR register.
* \param rasr Value for RASR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegionEx(uint32_t rnr, uint32_t rbar, uint32_t rasr)
{
MPU->RNR = rnr;
MPU->RBAR = rbar;
MPU->RASR = rasr;
}
/** Memcpy with strictly ordered memory access, e.g. used by code in ARM_MPU_Load().
* \param dst Destination data is copied to.
* \param src Source data is copied from.
* \param len Amount of data words to be copied.
*/
__STATIC_INLINE void ARM_MPU_OrderedMemcpy(volatile uint32_t* dst, const uint32_t* __RESTRICT src, uint32_t len)
{
uint32_t i;
for (i = 0U; i < len; ++i)
{
dst[i] = src[i];
}
}
/** Load the given number of MPU regions from a table.
* \param table Pointer to the MPU configuration table.
* \param cnt Amount of regions to be configured.
*/
__STATIC_INLINE void ARM_MPU_Load(ARM_MPU_Region_t const* table, uint32_t cnt)
{
const uint32_t rowWordSize = sizeof(ARM_MPU_Region_t)/4U;
while (cnt > MPU_TYPE_RALIASES) {
ARM_MPU_OrderedMemcpy(&(MPU->RBAR), &(table->RBAR), MPU_TYPE_RALIASES*rowWordSize);
table += MPU_TYPE_RALIASES;
cnt -= MPU_TYPE_RALIASES;
}
ARM_MPU_OrderedMemcpy(&(MPU->RBAR), &(table->RBAR), cnt*rowWordSize);
}
#endif

View File

@ -0,0 +1,352 @@
/******************************************************************************
* @file mpu_armv8.h
* @brief CMSIS MPU API for Armv8-M and Armv8.1-M MPU
* @version V5.1.3
* @date 03. February 2021
******************************************************************************/
/*
* Copyright (c) 2017-2021 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef ARM_MPU_ARMV8_H
#define ARM_MPU_ARMV8_H
/** \brief Attribute for device memory (outer only) */
#define ARM_MPU_ATTR_DEVICE ( 0U )
/** \brief Attribute for non-cacheable, normal memory */
#define ARM_MPU_ATTR_NON_CACHEABLE ( 4U )
/** \brief Attribute for normal memory (outer and inner)
* \param NT Non-Transient: Set to 1 for non-transient data.
* \param WB Write-Back: Set to 1 to use write-back update policy.
* \param RA Read Allocation: Set to 1 to use cache allocation on read miss.
* \param WA Write Allocation: Set to 1 to use cache allocation on write miss.
*/
#define ARM_MPU_ATTR_MEMORY_(NT, WB, RA, WA) \
((((NT) & 1U) << 3U) | (((WB) & 1U) << 2U) | (((RA) & 1U) << 1U) | ((WA) & 1U))
/** \brief Device memory type non Gathering, non Re-ordering, non Early Write Acknowledgement */
#define ARM_MPU_ATTR_DEVICE_nGnRnE (0U)
/** \brief Device memory type non Gathering, non Re-ordering, Early Write Acknowledgement */
#define ARM_MPU_ATTR_DEVICE_nGnRE (1U)
/** \brief Device memory type non Gathering, Re-ordering, Early Write Acknowledgement */
#define ARM_MPU_ATTR_DEVICE_nGRE (2U)
/** \brief Device memory type Gathering, Re-ordering, Early Write Acknowledgement */
#define ARM_MPU_ATTR_DEVICE_GRE (3U)
/** \brief Memory Attribute
* \param O Outer memory attributes
* \param I O == ARM_MPU_ATTR_DEVICE: Device memory attributes, else: Inner memory attributes
*/
#define ARM_MPU_ATTR(O, I) ((((O) & 0xFU) << 4U) | ((((O) & 0xFU) != 0U) ? ((I) & 0xFU) : (((I) & 0x3U) << 2U)))
/** \brief Normal memory non-shareable */
#define ARM_MPU_SH_NON (0U)
/** \brief Normal memory outer shareable */
#define ARM_MPU_SH_OUTER (2U)
/** \brief Normal memory inner shareable */
#define ARM_MPU_SH_INNER (3U)
/** \brief Memory access permissions
* \param RO Read-Only: Set to 1 for read-only memory.
* \param NP Non-Privileged: Set to 1 for non-privileged memory.
*/
#define ARM_MPU_AP_(RO, NP) ((((RO) & 1U) << 1U) | ((NP) & 1U))
/** \brief Region Base Address Register value
* \param BASE The base address bits [31:5] of a memory region. The value is zero extended. Effective address gets 32 byte aligned.
* \param SH Defines the Shareability domain for this memory region.
* \param RO Read-Only: Set to 1 for a read-only memory region.
* \param NP Non-Privileged: Set to 1 for a non-privileged memory region.
* \oaram XN eXecute Never: Set to 1 for a non-executable memory region.
*/
#define ARM_MPU_RBAR(BASE, SH, RO, NP, XN) \
(((BASE) & MPU_RBAR_BASE_Msk) | \
(((SH) << MPU_RBAR_SH_Pos) & MPU_RBAR_SH_Msk) | \
((ARM_MPU_AP_(RO, NP) << MPU_RBAR_AP_Pos) & MPU_RBAR_AP_Msk) | \
(((XN) << MPU_RBAR_XN_Pos) & MPU_RBAR_XN_Msk))
/** \brief Region Limit Address Register value
* \param LIMIT The limit address bits [31:5] for this memory region. The value is one extended.
* \param IDX The attribute index to be associated with this memory region.
*/
#define ARM_MPU_RLAR(LIMIT, IDX) \
(((LIMIT) & MPU_RLAR_LIMIT_Msk) | \
(((IDX) << MPU_RLAR_AttrIndx_Pos) & MPU_RLAR_AttrIndx_Msk) | \
(MPU_RLAR_EN_Msk))
#if defined(MPU_RLAR_PXN_Pos)
/** \brief Region Limit Address Register with PXN value
* \param LIMIT The limit address bits [31:5] for this memory region. The value is one extended.
* \param PXN Privileged execute never. Defines whether code can be executed from this privileged region.
* \param IDX The attribute index to be associated with this memory region.
*/
#define ARM_MPU_RLAR_PXN(LIMIT, PXN, IDX) \
(((LIMIT) & MPU_RLAR_LIMIT_Msk) | \
(((PXN) << MPU_RLAR_PXN_Pos) & MPU_RLAR_PXN_Msk) | \
(((IDX) << MPU_RLAR_AttrIndx_Pos) & MPU_RLAR_AttrIndx_Msk) | \
(MPU_RLAR_EN_Msk))
#endif
/**
* Struct for a single MPU Region
*/
typedef struct {
uint32_t RBAR; /*!< Region Base Address Register value */
uint32_t RLAR; /*!< Region Limit Address Register value */
} ARM_MPU_Region_t;
/** Enable the MPU.
* \param MPU_Control Default access permissions for unconfigured regions.
*/
__STATIC_INLINE void ARM_MPU_Enable(uint32_t MPU_Control)
{
__DMB();
MPU->CTRL = MPU_Control | MPU_CTRL_ENABLE_Msk;
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
#endif
__DSB();
__ISB();
}
/** Disable the MPU.
*/
__STATIC_INLINE void ARM_MPU_Disable(void)
{
__DMB();
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk;
#endif
MPU->CTRL &= ~MPU_CTRL_ENABLE_Msk;
__DSB();
__ISB();
}
#ifdef MPU_NS
/** Enable the Non-secure MPU.
* \param MPU_Control Default access permissions for unconfigured regions.
*/
__STATIC_INLINE void ARM_MPU_Enable_NS(uint32_t MPU_Control)
{
__DMB();
MPU_NS->CTRL = MPU_Control | MPU_CTRL_ENABLE_Msk;
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB_NS->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
#endif
__DSB();
__ISB();
}
/** Disable the Non-secure MPU.
*/
__STATIC_INLINE void ARM_MPU_Disable_NS(void)
{
__DMB();
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB_NS->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk;
#endif
MPU_NS->CTRL &= ~MPU_CTRL_ENABLE_Msk;
__DSB();
__ISB();
}
#endif
/** Set the memory attribute encoding to the given MPU.
* \param mpu Pointer to the MPU to be configured.
* \param idx The attribute index to be set [0-7]
* \param attr The attribute value to be set.
*/
__STATIC_INLINE void ARM_MPU_SetMemAttrEx(MPU_Type* mpu, uint8_t idx, uint8_t attr)
{
const uint8_t reg = idx / 4U;
const uint32_t pos = ((idx % 4U) * 8U);
const uint32_t mask = 0xFFU << pos;
if (reg >= (sizeof(mpu->MAIR) / sizeof(mpu->MAIR[0]))) {
return; // invalid index
}
mpu->MAIR[reg] = ((mpu->MAIR[reg] & ~mask) | ((attr << pos) & mask));
}
/** Set the memory attribute encoding.
* \param idx The attribute index to be set [0-7]
* \param attr The attribute value to be set.
*/
__STATIC_INLINE void ARM_MPU_SetMemAttr(uint8_t idx, uint8_t attr)
{
ARM_MPU_SetMemAttrEx(MPU, idx, attr);
}
#ifdef MPU_NS
/** Set the memory attribute encoding to the Non-secure MPU.
* \param idx The attribute index to be set [0-7]
* \param attr The attribute value to be set.
*/
__STATIC_INLINE void ARM_MPU_SetMemAttr_NS(uint8_t idx, uint8_t attr)
{
ARM_MPU_SetMemAttrEx(MPU_NS, idx, attr);
}
#endif
/** Clear and disable the given MPU region of the given MPU.
* \param mpu Pointer to MPU to be used.
* \param rnr Region number to be cleared.
*/
__STATIC_INLINE void ARM_MPU_ClrRegionEx(MPU_Type* mpu, uint32_t rnr)
{
mpu->RNR = rnr;
mpu->RLAR = 0U;
}
/** Clear and disable the given MPU region.
* \param rnr Region number to be cleared.
*/
__STATIC_INLINE void ARM_MPU_ClrRegion(uint32_t rnr)
{
ARM_MPU_ClrRegionEx(MPU, rnr);
}
#ifdef MPU_NS
/** Clear and disable the given Non-secure MPU region.
* \param rnr Region number to be cleared.
*/
__STATIC_INLINE void ARM_MPU_ClrRegion_NS(uint32_t rnr)
{
ARM_MPU_ClrRegionEx(MPU_NS, rnr);
}
#endif
/** Configure the given MPU region of the given MPU.
* \param mpu Pointer to MPU to be used.
* \param rnr Region number to be configured.
* \param rbar Value for RBAR register.
* \param rlar Value for RLAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegionEx(MPU_Type* mpu, uint32_t rnr, uint32_t rbar, uint32_t rlar)
{
mpu->RNR = rnr;
mpu->RBAR = rbar;
mpu->RLAR = rlar;
}
/** Configure the given MPU region.
* \param rnr Region number to be configured.
* \param rbar Value for RBAR register.
* \param rlar Value for RLAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegion(uint32_t rnr, uint32_t rbar, uint32_t rlar)
{
ARM_MPU_SetRegionEx(MPU, rnr, rbar, rlar);
}
#ifdef MPU_NS
/** Configure the given Non-secure MPU region.
* \param rnr Region number to be configured.
* \param rbar Value for RBAR register.
* \param rlar Value for RLAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegion_NS(uint32_t rnr, uint32_t rbar, uint32_t rlar)
{
ARM_MPU_SetRegionEx(MPU_NS, rnr, rbar, rlar);
}
#endif
/** Memcpy with strictly ordered memory access, e.g. used by code in ARM_MPU_LoadEx()
* \param dst Destination data is copied to.
* \param src Source data is copied from.
* \param len Amount of data words to be copied.
*/
__STATIC_INLINE void ARM_MPU_OrderedMemcpy(volatile uint32_t* dst, const uint32_t* __RESTRICT src, uint32_t len)
{
uint32_t i;
for (i = 0U; i < len; ++i)
{
dst[i] = src[i];
}
}
/** Load the given number of MPU regions from a table to the given MPU.
* \param mpu Pointer to the MPU registers to be used.
* \param rnr First region number to be configured.
* \param table Pointer to the MPU configuration table.
* \param cnt Amount of regions to be configured.
*/
__STATIC_INLINE void ARM_MPU_LoadEx(MPU_Type* mpu, uint32_t rnr, ARM_MPU_Region_t const* table, uint32_t cnt)
{
const uint32_t rowWordSize = sizeof(ARM_MPU_Region_t)/4U;
if (cnt == 1U) {
mpu->RNR = rnr;
ARM_MPU_OrderedMemcpy(&(mpu->RBAR), &(table->RBAR), rowWordSize);
} else {
uint32_t rnrBase = rnr & ~(MPU_TYPE_RALIASES-1U);
uint32_t rnrOffset = rnr % MPU_TYPE_RALIASES;
mpu->RNR = rnrBase;
while ((rnrOffset + cnt) > MPU_TYPE_RALIASES) {
uint32_t c = MPU_TYPE_RALIASES - rnrOffset;
ARM_MPU_OrderedMemcpy(&(mpu->RBAR)+(rnrOffset*2U), &(table->RBAR), c*rowWordSize);
table += c;
cnt -= c;
rnrOffset = 0U;
rnrBase += MPU_TYPE_RALIASES;
mpu->RNR = rnrBase;
}
ARM_MPU_OrderedMemcpy(&(mpu->RBAR)+(rnrOffset*2U), &(table->RBAR), cnt*rowWordSize);
}
}
/** Load the given number of MPU regions from a table.
* \param rnr First region number to be configured.
* \param table Pointer to the MPU configuration table.
* \param cnt Amount of regions to be configured.
*/
__STATIC_INLINE void ARM_MPU_Load(uint32_t rnr, ARM_MPU_Region_t const* table, uint32_t cnt)
{
ARM_MPU_LoadEx(MPU, rnr, table, cnt);
}
#ifdef MPU_NS
/** Load the given number of MPU regions from a table to the Non-secure MPU.
* \param rnr First region number to be configured.
* \param table Pointer to the MPU configuration table.
* \param cnt Amount of regions to be configured.
*/
__STATIC_INLINE void ARM_MPU_Load_NS(uint32_t rnr, ARM_MPU_Region_t const* table, uint32_t cnt)
{
ARM_MPU_LoadEx(MPU_NS, rnr, table, cnt);
}
#endif
#endif

View File

@ -0,0 +1,206 @@
/******************************************************************************
* @file pac_armv81.h
* @brief CMSIS PAC key functions for Armv8.1-M PAC extension
* @version V1.0.0
* @date 23. March 2022
******************************************************************************/
/*
* Copyright (c) 2022 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef PAC_ARMV81_H
#define PAC_ARMV81_H
/* ################### PAC Key functions ########################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_PacKeyFunctions PAC Key functions
\brief Functions that access the PAC keys.
@{
*/
#if (defined (__ARM_FEATURE_PAUTH) && (__ARM_FEATURE_PAUTH == 1))
/**
\brief read the PAC key used for privileged mode
\details Reads the PAC key stored in the PAC_KEY_P registers.
\param [out] pPacKey 128bit PAC key
*/
__STATIC_FORCEINLINE void __get_PAC_KEY_P (uint32_t* pPacKey) {
__ASM volatile (
"mrs r1, pac_key_p_0\n"
"str r1,[%0,#0]\n"
"mrs r1, pac_key_p_1\n"
"str r1,[%0,#4]\n"
"mrs r1, pac_key_p_2\n"
"str r1,[%0,#8]\n"
"mrs r1, pac_key_p_3\n"
"str r1,[%0,#12]\n"
: : "r" (pPacKey) : "memory", "r1"
);
}
/**
\brief write the PAC key used for privileged mode
\details writes the given PAC key to the PAC_KEY_P registers.
\param [in] pPacKey 128bit PAC key
*/
__STATIC_FORCEINLINE void __set_PAC_KEY_P (uint32_t* pPacKey) {
__ASM volatile (
"ldr r1,[%0,#0]\n"
"msr pac_key_p_0, r1\n"
"ldr r1,[%0,#4]\n"
"msr pac_key_p_1, r1\n"
"ldr r1,[%0,#8]\n"
"msr pac_key_p_2, r1\n"
"ldr r1,[%0,#12]\n"
"msr pac_key_p_3, r1\n"
: : "r" (pPacKey) : "memory", "r1"
);
}
/**
\brief read the PAC key used for unprivileged mode
\details Reads the PAC key stored in the PAC_KEY_U registers.
\param [out] pPacKey 128bit PAC key
*/
__STATIC_FORCEINLINE void __get_PAC_KEY_U (uint32_t* pPacKey) {
__ASM volatile (
"mrs r1, pac_key_u_0\n"
"str r1,[%0,#0]\n"
"mrs r1, pac_key_u_1\n"
"str r1,[%0,#4]\n"
"mrs r1, pac_key_u_2\n"
"str r1,[%0,#8]\n"
"mrs r1, pac_key_u_3\n"
"str r1,[%0,#12]\n"
: : "r" (pPacKey) : "memory", "r1"
);
}
/**
\brief write the PAC key used for unprivileged mode
\details writes the given PAC key to the PAC_KEY_U registers.
\param [in] pPacKey 128bit PAC key
*/
__STATIC_FORCEINLINE void __set_PAC_KEY_U (uint32_t* pPacKey) {
__ASM volatile (
"ldr r1,[%0,#0]\n"
"msr pac_key_u_0, r1\n"
"ldr r1,[%0,#4]\n"
"msr pac_key_u_1, r1\n"
"ldr r1,[%0,#8]\n"
"msr pac_key_u_2, r1\n"
"ldr r1,[%0,#12]\n"
"msr pac_key_u_3, r1\n"
: : "r" (pPacKey) : "memory", "r1"
);
}
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
/**
\brief read the PAC key used for privileged mode (non-secure)
\details Reads the PAC key stored in the non-secure PAC_KEY_P registers when in secure mode.
\param [out] pPacKey 128bit PAC key
*/
__STATIC_FORCEINLINE void __TZ_get_PAC_KEY_P_NS (uint32_t* pPacKey) {
__ASM volatile (
"mrs r1, pac_key_p_0_ns\n"
"str r1,[%0,#0]\n"
"mrs r1, pac_key_p_1_ns\n"
"str r1,[%0,#4]\n"
"mrs r1, pac_key_p_2_ns\n"
"str r1,[%0,#8]\n"
"mrs r1, pac_key_p_3_ns\n"
"str r1,[%0,#12]\n"
: : "r" (pPacKey) : "memory", "r1"
);
}
/**
\brief write the PAC key used for privileged mode (non-secure)
\details writes the given PAC key to the non-secure PAC_KEY_P registers when in secure mode.
\param [in] pPacKey 128bit PAC key
*/
__STATIC_FORCEINLINE void __TZ_set_PAC_KEY_P_NS (uint32_t* pPacKey) {
__ASM volatile (
"ldr r1,[%0,#0]\n"
"msr pac_key_p_0_ns, r1\n"
"ldr r1,[%0,#4]\n"
"msr pac_key_p_1_ns, r1\n"
"ldr r1,[%0,#8]\n"
"msr pac_key_p_2_ns, r1\n"
"ldr r1,[%0,#12]\n"
"msr pac_key_p_3_ns, r1\n"
: : "r" (pPacKey) : "memory", "r1"
);
}
/**
\brief read the PAC key used for unprivileged mode (non-secure)
\details Reads the PAC key stored in the non-secure PAC_KEY_U registers when in secure mode.
\param [out] pPacKey 128bit PAC key
*/
__STATIC_FORCEINLINE void __TZ_get_PAC_KEY_U_NS (uint32_t* pPacKey) {
__ASM volatile (
"mrs r1, pac_key_u_0_ns\n"
"str r1,[%0,#0]\n"
"mrs r1, pac_key_u_1_ns\n"
"str r1,[%0,#4]\n"
"mrs r1, pac_key_u_2_ns\n"
"str r1,[%0,#8]\n"
"mrs r1, pac_key_u_3_ns\n"
"str r1,[%0,#12]\n"
: : "r" (pPacKey) : "memory", "r1"
);
}
/**
\brief write the PAC key used for unprivileged mode (non-secure)
\details writes the given PAC key to the non-secure PAC_KEY_U registers when in secure mode.
\param [in] pPacKey 128bit PAC key
*/
__STATIC_FORCEINLINE void __TZ_set_PAC_KEY_U_NS (uint32_t* pPacKey) {
__ASM volatile (
"ldr r1,[%0,#0]\n"
"msr pac_key_u_0_ns, r1\n"
"ldr r1,[%0,#4]\n"
"msr pac_key_u_1_ns, r1\n"
"ldr r1,[%0,#8]\n"
"msr pac_key_u_2_ns, r1\n"
"ldr r1,[%0,#12]\n"
"msr pac_key_u_3_ns, r1\n"
: : "r" (pPacKey) : "memory", "r1"
);
}
#endif /* (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) */
#endif /* (defined (__ARM_FEATURE_PAUTH) && (__ARM_FEATURE_PAUTH == 1)) */
/*@} end of CMSIS_Core_PacKeyFunctions */
#endif /* PAC_ARMV81_H */

View File

@ -0,0 +1,337 @@
/******************************************************************************
* @file pmu_armv8.h
* @brief CMSIS PMU API for Armv8.1-M PMU
* @version V1.0.1
* @date 15. April 2020
******************************************************************************/
/*
* Copyright (c) 2020 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef ARM_PMU_ARMV8_H
#define ARM_PMU_ARMV8_H
/**
* \brief PMU Events
* \note See the Armv8.1-M Architecture Reference Manual for full details on these PMU events.
* */
#define ARM_PMU_SW_INCR 0x0000 /*!< Software update to the PMU_SWINC register, architecturally executed and condition code check pass */
#define ARM_PMU_L1I_CACHE_REFILL 0x0001 /*!< L1 I-Cache refill */
#define ARM_PMU_L1D_CACHE_REFILL 0x0003 /*!< L1 D-Cache refill */
#define ARM_PMU_L1D_CACHE 0x0004 /*!< L1 D-Cache access */
#define ARM_PMU_LD_RETIRED 0x0006 /*!< Memory-reading instruction architecturally executed and condition code check pass */
#define ARM_PMU_ST_RETIRED 0x0007 /*!< Memory-writing instruction architecturally executed and condition code check pass */
#define ARM_PMU_INST_RETIRED 0x0008 /*!< Instruction architecturally executed */
#define ARM_PMU_EXC_TAKEN 0x0009 /*!< Exception entry */
#define ARM_PMU_EXC_RETURN 0x000A /*!< Exception return instruction architecturally executed and the condition code check pass */
#define ARM_PMU_PC_WRITE_RETIRED 0x000C /*!< Software change to the Program Counter (PC). Instruction is architecturally executed and condition code check pass */
#define ARM_PMU_BR_IMMED_RETIRED 0x000D /*!< Immediate branch architecturally executed */
#define ARM_PMU_BR_RETURN_RETIRED 0x000E /*!< Function return instruction architecturally executed and the condition code check pass */
#define ARM_PMU_UNALIGNED_LDST_RETIRED 0x000F /*!< Unaligned memory memory-reading or memory-writing instruction architecturally executed and condition code check pass */
#define ARM_PMU_BR_MIS_PRED 0x0010 /*!< Mispredicted or not predicted branch speculatively executed */
#define ARM_PMU_CPU_CYCLES 0x0011 /*!< Cycle */
#define ARM_PMU_BR_PRED 0x0012 /*!< Predictable branch speculatively executed */
#define ARM_PMU_MEM_ACCESS 0x0013 /*!< Data memory access */
#define ARM_PMU_L1I_CACHE 0x0014 /*!< Level 1 instruction cache access */
#define ARM_PMU_L1D_CACHE_WB 0x0015 /*!< Level 1 data cache write-back */
#define ARM_PMU_L2D_CACHE 0x0016 /*!< Level 2 data cache access */
#define ARM_PMU_L2D_CACHE_REFILL 0x0017 /*!< Level 2 data cache refill */
#define ARM_PMU_L2D_CACHE_WB 0x0018 /*!< Level 2 data cache write-back */
#define ARM_PMU_BUS_ACCESS 0x0019 /*!< Bus access */
#define ARM_PMU_MEMORY_ERROR 0x001A /*!< Local memory error */
#define ARM_PMU_INST_SPEC 0x001B /*!< Instruction speculatively executed */
#define ARM_PMU_BUS_CYCLES 0x001D /*!< Bus cycles */
#define ARM_PMU_CHAIN 0x001E /*!< For an odd numbered counter, increment when an overflow occurs on the preceding even-numbered counter on the same PE */
#define ARM_PMU_L1D_CACHE_ALLOCATE 0x001F /*!< Level 1 data cache allocation without refill */
#define ARM_PMU_L2D_CACHE_ALLOCATE 0x0020 /*!< Level 2 data cache allocation without refill */
#define ARM_PMU_BR_RETIRED 0x0021 /*!< Branch instruction architecturally executed */
#define ARM_PMU_BR_MIS_PRED_RETIRED 0x0022 /*!< Mispredicted branch instruction architecturally executed */
#define ARM_PMU_STALL_FRONTEND 0x0023 /*!< No operation issued because of the frontend */
#define ARM_PMU_STALL_BACKEND 0x0024 /*!< No operation issued because of the backend */
#define ARM_PMU_L2I_CACHE 0x0027 /*!< Level 2 instruction cache access */
#define ARM_PMU_L2I_CACHE_REFILL 0x0028 /*!< Level 2 instruction cache refill */
#define ARM_PMU_L3D_CACHE_ALLOCATE 0x0029 /*!< Level 3 data cache allocation without refill */
#define ARM_PMU_L3D_CACHE_REFILL 0x002A /*!< Level 3 data cache refill */
#define ARM_PMU_L3D_CACHE 0x002B /*!< Level 3 data cache access */
#define ARM_PMU_L3D_CACHE_WB 0x002C /*!< Level 3 data cache write-back */
#define ARM_PMU_LL_CACHE_RD 0x0036 /*!< Last level data cache read */
#define ARM_PMU_LL_CACHE_MISS_RD 0x0037 /*!< Last level data cache read miss */
#define ARM_PMU_L1D_CACHE_MISS_RD 0x0039 /*!< Level 1 data cache read miss */
#define ARM_PMU_OP_COMPLETE 0x003A /*!< Operation retired */
#define ARM_PMU_OP_SPEC 0x003B /*!< Operation speculatively executed */
#define ARM_PMU_STALL 0x003C /*!< Stall cycle for instruction or operation not sent for execution */
#define ARM_PMU_STALL_OP_BACKEND 0x003D /*!< Stall cycle for instruction or operation not sent for execution due to pipeline backend */
#define ARM_PMU_STALL_OP_FRONTEND 0x003E /*!< Stall cycle for instruction or operation not sent for execution due to pipeline frontend */
#define ARM_PMU_STALL_OP 0x003F /*!< Instruction or operation slots not occupied each cycle */
#define ARM_PMU_L1D_CACHE_RD 0x0040 /*!< Level 1 data cache read */
#define ARM_PMU_LE_RETIRED 0x0100 /*!< Loop end instruction executed */
#define ARM_PMU_LE_SPEC 0x0101 /*!< Loop end instruction speculatively executed */
#define ARM_PMU_BF_RETIRED 0x0104 /*!< Branch future instruction architecturally executed and condition code check pass */
#define ARM_PMU_BF_SPEC 0x0105 /*!< Branch future instruction speculatively executed and condition code check pass */
#define ARM_PMU_LE_CANCEL 0x0108 /*!< Loop end instruction not taken */
#define ARM_PMU_BF_CANCEL 0x0109 /*!< Branch future instruction not taken */
#define ARM_PMU_SE_CALL_S 0x0114 /*!< Call to secure function, resulting in Security state change */
#define ARM_PMU_SE_CALL_NS 0x0115 /*!< Call to non-secure function, resulting in Security state change */
#define ARM_PMU_DWT_CMPMATCH0 0x0118 /*!< DWT comparator 0 match */
#define ARM_PMU_DWT_CMPMATCH1 0x0119 /*!< DWT comparator 1 match */
#define ARM_PMU_DWT_CMPMATCH2 0x011A /*!< DWT comparator 2 match */
#define ARM_PMU_DWT_CMPMATCH3 0x011B /*!< DWT comparator 3 match */
#define ARM_PMU_MVE_INST_RETIRED 0x0200 /*!< MVE instruction architecturally executed */
#define ARM_PMU_MVE_INST_SPEC 0x0201 /*!< MVE instruction speculatively executed */
#define ARM_PMU_MVE_FP_RETIRED 0x0204 /*!< MVE floating-point instruction architecturally executed */
#define ARM_PMU_MVE_FP_SPEC 0x0205 /*!< MVE floating-point instruction speculatively executed */
#define ARM_PMU_MVE_FP_HP_RETIRED 0x0208 /*!< MVE half-precision floating-point instruction architecturally executed */
#define ARM_PMU_MVE_FP_HP_SPEC 0x0209 /*!< MVE half-precision floating-point instruction speculatively executed */
#define ARM_PMU_MVE_FP_SP_RETIRED 0x020C /*!< MVE single-precision floating-point instruction architecturally executed */
#define ARM_PMU_MVE_FP_SP_SPEC 0x020D /*!< MVE single-precision floating-point instruction speculatively executed */
#define ARM_PMU_MVE_FP_MAC_RETIRED 0x0214 /*!< MVE floating-point multiply or multiply-accumulate instruction architecturally executed */
#define ARM_PMU_MVE_FP_MAC_SPEC 0x0215 /*!< MVE floating-point multiply or multiply-accumulate instruction speculatively executed */
#define ARM_PMU_MVE_INT_RETIRED 0x0224 /*!< MVE integer instruction architecturally executed */
#define ARM_PMU_MVE_INT_SPEC 0x0225 /*!< MVE integer instruction speculatively executed */
#define ARM_PMU_MVE_INT_MAC_RETIRED 0x0228 /*!< MVE multiply or multiply-accumulate instruction architecturally executed */
#define ARM_PMU_MVE_INT_MAC_SPEC 0x0229 /*!< MVE multiply or multiply-accumulate instruction speculatively executed */
#define ARM_PMU_MVE_LDST_RETIRED 0x0238 /*!< MVE load or store instruction architecturally executed */
#define ARM_PMU_MVE_LDST_SPEC 0x0239 /*!< MVE load or store instruction speculatively executed */
#define ARM_PMU_MVE_LD_RETIRED 0x023C /*!< MVE load instruction architecturally executed */
#define ARM_PMU_MVE_LD_SPEC 0x023D /*!< MVE load instruction speculatively executed */
#define ARM_PMU_MVE_ST_RETIRED 0x0240 /*!< MVE store instruction architecturally executed */
#define ARM_PMU_MVE_ST_SPEC 0x0241 /*!< MVE store instruction speculatively executed */
#define ARM_PMU_MVE_LDST_CONTIG_RETIRED 0x0244 /*!< MVE contiguous load or store instruction architecturally executed */
#define ARM_PMU_MVE_LDST_CONTIG_SPEC 0x0245 /*!< MVE contiguous load or store instruction speculatively executed */
#define ARM_PMU_MVE_LD_CONTIG_RETIRED 0x0248 /*!< MVE contiguous load instruction architecturally executed */
#define ARM_PMU_MVE_LD_CONTIG_SPEC 0x0249 /*!< MVE contiguous load instruction speculatively executed */
#define ARM_PMU_MVE_ST_CONTIG_RETIRED 0x024C /*!< MVE contiguous store instruction architecturally executed */
#define ARM_PMU_MVE_ST_CONTIG_SPEC 0x024D /*!< MVE contiguous store instruction speculatively executed */
#define ARM_PMU_MVE_LDST_NONCONTIG_RETIRED 0x0250 /*!< MVE non-contiguous load or store instruction architecturally executed */
#define ARM_PMU_MVE_LDST_NONCONTIG_SPEC 0x0251 /*!< MVE non-contiguous load or store instruction speculatively executed */
#define ARM_PMU_MVE_LD_NONCONTIG_RETIRED 0x0254 /*!< MVE non-contiguous load instruction architecturally executed */
#define ARM_PMU_MVE_LD_NONCONTIG_SPEC 0x0255 /*!< MVE non-contiguous load instruction speculatively executed */
#define ARM_PMU_MVE_ST_NONCONTIG_RETIRED 0x0258 /*!< MVE non-contiguous store instruction architecturally executed */
#define ARM_PMU_MVE_ST_NONCONTIG_SPEC 0x0259 /*!< MVE non-contiguous store instruction speculatively executed */
#define ARM_PMU_MVE_LDST_MULTI_RETIRED 0x025C /*!< MVE memory instruction targeting multiple registers architecturally executed */
#define ARM_PMU_MVE_LDST_MULTI_SPEC 0x025D /*!< MVE memory instruction targeting multiple registers speculatively executed */
#define ARM_PMU_MVE_LD_MULTI_RETIRED 0x0260 /*!< MVE memory load instruction targeting multiple registers architecturally executed */
#define ARM_PMU_MVE_LD_MULTI_SPEC 0x0261 /*!< MVE memory load instruction targeting multiple registers speculatively executed */
#define ARM_PMU_MVE_ST_MULTI_RETIRED 0x0261 /*!< MVE memory store instruction targeting multiple registers architecturally executed */
#define ARM_PMU_MVE_ST_MULTI_SPEC 0x0265 /*!< MVE memory store instruction targeting multiple registers speculatively executed */
#define ARM_PMU_MVE_LDST_UNALIGNED_RETIRED 0x028C /*!< MVE unaligned memory load or store instruction architecturally executed */
#define ARM_PMU_MVE_LDST_UNALIGNED_SPEC 0x028D /*!< MVE unaligned memory load or store instruction speculatively executed */
#define ARM_PMU_MVE_LD_UNALIGNED_RETIRED 0x0290 /*!< MVE unaligned load instruction architecturally executed */
#define ARM_PMU_MVE_LD_UNALIGNED_SPEC 0x0291 /*!< MVE unaligned load instruction speculatively executed */
#define ARM_PMU_MVE_ST_UNALIGNED_RETIRED 0x0294 /*!< MVE unaligned store instruction architecturally executed */
#define ARM_PMU_MVE_ST_UNALIGNED_SPEC 0x0295 /*!< MVE unaligned store instruction speculatively executed */
#define ARM_PMU_MVE_LDST_UNALIGNED_NONCONTIG_RETIRED 0x0298 /*!< MVE unaligned noncontiguous load or store instruction architecturally executed */
#define ARM_PMU_MVE_LDST_UNALIGNED_NONCONTIG_SPEC 0x0299 /*!< MVE unaligned noncontiguous load or store instruction speculatively executed */
#define ARM_PMU_MVE_VREDUCE_RETIRED 0x02A0 /*!< MVE vector reduction instruction architecturally executed */
#define ARM_PMU_MVE_VREDUCE_SPEC 0x02A1 /*!< MVE vector reduction instruction speculatively executed */
#define ARM_PMU_MVE_VREDUCE_FP_RETIRED 0x02A4 /*!< MVE floating-point vector reduction instruction architecturally executed */
#define ARM_PMU_MVE_VREDUCE_FP_SPEC 0x02A5 /*!< MVE floating-point vector reduction instruction speculatively executed */
#define ARM_PMU_MVE_VREDUCE_INT_RETIRED 0x02A8 /*!< MVE integer vector reduction instruction architecturally executed */
#define ARM_PMU_MVE_VREDUCE_INT_SPEC 0x02A9 /*!< MVE integer vector reduction instruction speculatively executed */
#define ARM_PMU_MVE_PRED 0x02B8 /*!< Cycles where one or more predicated beats architecturally executed */
#define ARM_PMU_MVE_STALL 0x02CC /*!< Stall cycles caused by an MVE instruction */
#define ARM_PMU_MVE_STALL_RESOURCE 0x02CD /*!< Stall cycles caused by an MVE instruction because of resource conflicts */
#define ARM_PMU_MVE_STALL_RESOURCE_MEM 0x02CE /*!< Stall cycles caused by an MVE instruction because of memory resource conflicts */
#define ARM_PMU_MVE_STALL_RESOURCE_FP 0x02CF /*!< Stall cycles caused by an MVE instruction because of floating-point resource conflicts */
#define ARM_PMU_MVE_STALL_RESOURCE_INT 0x02D0 /*!< Stall cycles caused by an MVE instruction because of integer resource conflicts */
#define ARM_PMU_MVE_STALL_BREAK 0x02D3 /*!< Stall cycles caused by an MVE chain break */
#define ARM_PMU_MVE_STALL_DEPENDENCY 0x02D4 /*!< Stall cycles caused by MVE register dependency */
#define ARM_PMU_ITCM_ACCESS 0x4007 /*!< Instruction TCM access */
#define ARM_PMU_DTCM_ACCESS 0x4008 /*!< Data TCM access */
#define ARM_PMU_TRCEXTOUT0 0x4010 /*!< ETM external output 0 */
#define ARM_PMU_TRCEXTOUT1 0x4011 /*!< ETM external output 1 */
#define ARM_PMU_TRCEXTOUT2 0x4012 /*!< ETM external output 2 */
#define ARM_PMU_TRCEXTOUT3 0x4013 /*!< ETM external output 3 */
#define ARM_PMU_CTI_TRIGOUT4 0x4018 /*!< Cross-trigger Interface output trigger 4 */
#define ARM_PMU_CTI_TRIGOUT5 0x4019 /*!< Cross-trigger Interface output trigger 5 */
#define ARM_PMU_CTI_TRIGOUT6 0x401A /*!< Cross-trigger Interface output trigger 6 */
#define ARM_PMU_CTI_TRIGOUT7 0x401B /*!< Cross-trigger Interface output trigger 7 */
/** \brief PMU Functions */
__STATIC_INLINE void ARM_PMU_Enable(void);
__STATIC_INLINE void ARM_PMU_Disable(void);
__STATIC_INLINE void ARM_PMU_Set_EVTYPER(uint32_t num, uint32_t type);
__STATIC_INLINE void ARM_PMU_CYCCNT_Reset(void);
__STATIC_INLINE void ARM_PMU_EVCNTR_ALL_Reset(void);
__STATIC_INLINE void ARM_PMU_CNTR_Enable(uint32_t mask);
__STATIC_INLINE void ARM_PMU_CNTR_Disable(uint32_t mask);
__STATIC_INLINE uint32_t ARM_PMU_Get_CCNTR(void);
__STATIC_INLINE uint32_t ARM_PMU_Get_EVCNTR(uint32_t num);
__STATIC_INLINE uint32_t ARM_PMU_Get_CNTR_OVS(void);
__STATIC_INLINE void ARM_PMU_Set_CNTR_OVS(uint32_t mask);
__STATIC_INLINE void ARM_PMU_Set_CNTR_IRQ_Enable(uint32_t mask);
__STATIC_INLINE void ARM_PMU_Set_CNTR_IRQ_Disable(uint32_t mask);
__STATIC_INLINE void ARM_PMU_CNTR_Increment(uint32_t mask);
/**
\brief Enable the PMU
*/
__STATIC_INLINE void ARM_PMU_Enable(void)
{
PMU->CTRL |= PMU_CTRL_ENABLE_Msk;
}
/**
\brief Disable the PMU
*/
__STATIC_INLINE void ARM_PMU_Disable(void)
{
PMU->CTRL &= ~PMU_CTRL_ENABLE_Msk;
}
/**
\brief Set event to count for PMU eventer counter
\param [in] num Event counter (0-30) to configure
\param [in] type Event to count
*/
__STATIC_INLINE void ARM_PMU_Set_EVTYPER(uint32_t num, uint32_t type)
{
PMU->EVTYPER[num] = type;
}
/**
\brief Reset cycle counter
*/
__STATIC_INLINE void ARM_PMU_CYCCNT_Reset(void)
{
PMU->CTRL |= PMU_CTRL_CYCCNT_RESET_Msk;
}
/**
\brief Reset all event counters
*/
__STATIC_INLINE void ARM_PMU_EVCNTR_ALL_Reset(void)
{
PMU->CTRL |= PMU_CTRL_EVENTCNT_RESET_Msk;
}
/**
\brief Enable counters
\param [in] mask Counters to enable
\note Enables one or more of the following:
- event counters (0-30)
- cycle counter
*/
__STATIC_INLINE void ARM_PMU_CNTR_Enable(uint32_t mask)
{
PMU->CNTENSET = mask;
}
/**
\brief Disable counters
\param [in] mask Counters to enable
\note Disables one or more of the following:
- event counters (0-30)
- cycle counter
*/
__STATIC_INLINE void ARM_PMU_CNTR_Disable(uint32_t mask)
{
PMU->CNTENCLR = mask;
}
/**
\brief Read cycle counter
\return Cycle count
*/
__STATIC_INLINE uint32_t ARM_PMU_Get_CCNTR(void)
{
return PMU->CCNTR;
}
/**
\brief Read event counter
\param [in] num Event counter (0-30) to read
\return Event count
*/
__STATIC_INLINE uint32_t ARM_PMU_Get_EVCNTR(uint32_t num)
{
return PMU_EVCNTR_CNT_Msk & PMU->EVCNTR[num];
}
/**
\brief Read counter overflow status
\return Counter overflow status bits for the following:
- event counters (0-30)
- cycle counter
*/
__STATIC_INLINE uint32_t ARM_PMU_Get_CNTR_OVS(void)
{
return PMU->OVSSET;
}
/**
\brief Clear counter overflow status
\param [in] mask Counter overflow status bits to clear
\note Clears overflow status bits for one or more of the following:
- event counters (0-30)
- cycle counter
*/
__STATIC_INLINE void ARM_PMU_Set_CNTR_OVS(uint32_t mask)
{
PMU->OVSCLR = mask;
}
/**
\brief Enable counter overflow interrupt request
\param [in] mask Counter overflow interrupt request bits to set
\note Sets overflow interrupt request bits for one or more of the following:
- event counters (0-30)
- cycle counter
*/
__STATIC_INLINE void ARM_PMU_Set_CNTR_IRQ_Enable(uint32_t mask)
{
PMU->INTENSET = mask;
}
/**
\brief Disable counter overflow interrupt request
\param [in] mask Counter overflow interrupt request bits to clear
\note Clears overflow interrupt request bits for one or more of the following:
- event counters (0-30)
- cycle counter
*/
__STATIC_INLINE void ARM_PMU_Set_CNTR_IRQ_Disable(uint32_t mask)
{
PMU->INTENCLR = mask;
}
/**
\brief Software increment event counter
\param [in] mask Counters to increment
\note Software increment bits for one or more event counters (0-30)
*/
__STATIC_INLINE void ARM_PMU_CNTR_Increment(uint32_t mask)
{
PMU->SWINC = mask;
}
#endif

View File

@ -0,0 +1,70 @@
/******************************************************************************
* @file tz_context.h
* @brief Context Management for Armv8-M TrustZone
* @version V1.0.1
* @date 10. January 2018
******************************************************************************/
/*
* Copyright (c) 2017-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef TZ_CONTEXT_H
#define TZ_CONTEXT_H
#include <stdint.h>
#ifndef TZ_MODULEID_T
#define TZ_MODULEID_T
/// \details Data type that identifies secure software modules called by a process.
typedef uint32_t TZ_ModuleId_t;
#endif
/// \details TZ Memory ID identifies an allocated memory slot.
typedef uint32_t TZ_MemoryId_t;
/// Initialize secure context memory system
/// \return execution status (1: success, 0: error)
uint32_t TZ_InitContextSystem_S (void);
/// Allocate context memory for calling secure software modules in TrustZone
/// \param[in] module identifies software modules called from non-secure mode
/// \return value != 0 id TrustZone memory slot identifier
/// \return value 0 no memory available or internal error
TZ_MemoryId_t TZ_AllocModuleContext_S (TZ_ModuleId_t module);
/// Free context memory that was previously allocated with \ref TZ_AllocModuleContext_S
/// \param[in] id TrustZone memory slot identifier
/// \return execution status (1: success, 0: error)
uint32_t TZ_FreeModuleContext_S (TZ_MemoryId_t id);
/// Load secure context (called on RTOS thread context switch)
/// \param[in] id TrustZone memory slot identifier
/// \return execution status (1: success, 0: error)
uint32_t TZ_LoadContext_S (TZ_MemoryId_t id);
/// Store secure context (called on RTOS thread context switch)
/// \param[in] id TrustZone memory slot identifier
/// \return execution status (1: success, 0: error)
uint32_t TZ_StoreContext_S (TZ_MemoryId_t id);
#endif // TZ_CONTEXT_H

View File

@ -0,0 +1,58 @@
/******************************************************************************
* @file main_s.c
* @brief Code template for secure main function
* @version V1.1.1
* @date 10. January 2018
******************************************************************************/
/*
* Copyright (c) 2013-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Use CMSE intrinsics */
#include <arm_cmse.h>
#include "RTE_Components.h"
#include CMSIS_device_header
/* TZ_START_NS: Start address of non-secure application */
#ifndef TZ_START_NS
#define TZ_START_NS (0x200000U)
#endif
/* typedef for non-secure callback functions */
typedef void (*funcptr_void) (void) __attribute__((cmse_nonsecure_call));
/* Secure main() */
int main(void) {
funcptr_void NonSecure_ResetHandler;
/* Add user setup code for secure part here*/
/* Set non-secure main stack (MSP_NS) */
__TZ_set_MSP_NS(*((uint32_t *)(TZ_START_NS)));
/* Get non-secure reset handler */
NonSecure_ResetHandler = (funcptr_void)(*((uint32_t *)((TZ_START_NS) + 4U)));
/* Start non-secure state software application */
NonSecure_ResetHandler();
/* Non-secure software does not return, this code is not executed */
while (1) {
__NOP();
}
}

View File

@ -0,0 +1,200 @@
/******************************************************************************
* @file tz_context.c
* @brief Context Management for Armv8-M TrustZone - Sample implementation
* @version V1.1.1
* @date 10. January 2018
******************************************************************************/
/*
* Copyright (c) 2016-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "RTE_Components.h"
#include CMSIS_device_header
#include "tz_context.h"
/// Number of process slots (threads may call secure library code)
#ifndef TZ_PROCESS_STACK_SLOTS
#define TZ_PROCESS_STACK_SLOTS 8U
#endif
/// Stack size of the secure library code
#ifndef TZ_PROCESS_STACK_SIZE
#define TZ_PROCESS_STACK_SIZE 256U
#endif
typedef struct {
uint32_t sp_top; // stack space top
uint32_t sp_limit; // stack space limit
uint32_t sp; // current stack pointer
} stack_info_t;
static stack_info_t ProcessStackInfo [TZ_PROCESS_STACK_SLOTS];
static uint64_t ProcessStackMemory[TZ_PROCESS_STACK_SLOTS][TZ_PROCESS_STACK_SIZE/8U];
static uint32_t ProcessStackFreeSlot = 0xFFFFFFFFU;
/// Initialize secure context memory system
/// \return execution status (1: success, 0: error)
__attribute__((cmse_nonsecure_entry))
uint32_t TZ_InitContextSystem_S (void) {
uint32_t n;
if (__get_IPSR() == 0U) {
return 0U; // Thread Mode
}
for (n = 0U; n < TZ_PROCESS_STACK_SLOTS; n++) {
ProcessStackInfo[n].sp = 0U;
ProcessStackInfo[n].sp_limit = (uint32_t)&ProcessStackMemory[n];
ProcessStackInfo[n].sp_top = (uint32_t)&ProcessStackMemory[n] + TZ_PROCESS_STACK_SIZE;
*((uint32_t *)ProcessStackMemory[n]) = n + 1U;
}
*((uint32_t *)ProcessStackMemory[--n]) = 0xFFFFFFFFU;
ProcessStackFreeSlot = 0U;
// Default process stack pointer and stack limit
__set_PSPLIM((uint32_t)ProcessStackMemory);
__set_PSP ((uint32_t)ProcessStackMemory);
// Privileged Thread Mode using PSP
__set_CONTROL(0x02U);
return 1U; // Success
}
/// Allocate context memory for calling secure software modules in TrustZone
/// \param[in] module identifies software modules called from non-secure mode
/// \return value != 0 id TrustZone memory slot identifier
/// \return value 0 no memory available or internal error
__attribute__((cmse_nonsecure_entry))
TZ_MemoryId_t TZ_AllocModuleContext_S (TZ_ModuleId_t module) {
uint32_t slot;
(void)module; // Ignore (fixed Stack size)
if (__get_IPSR() == 0U) {
return 0U; // Thread Mode
}
if (ProcessStackFreeSlot == 0xFFFFFFFFU) {
return 0U; // No slot available
}
slot = ProcessStackFreeSlot;
ProcessStackFreeSlot = *((uint32_t *)ProcessStackMemory[slot]);
ProcessStackInfo[slot].sp = ProcessStackInfo[slot].sp_top;
return (slot + 1U);
}
/// Free context memory that was previously allocated with \ref TZ_AllocModuleContext_S
/// \param[in] id TrustZone memory slot identifier
/// \return execution status (1: success, 0: error)
__attribute__((cmse_nonsecure_entry))
uint32_t TZ_FreeModuleContext_S (TZ_MemoryId_t id) {
uint32_t slot;
if (__get_IPSR() == 0U) {
return 0U; // Thread Mode
}
if ((id == 0U) || (id > TZ_PROCESS_STACK_SLOTS)) {
return 0U; // Invalid ID
}
slot = id - 1U;
if (ProcessStackInfo[slot].sp == 0U) {
return 0U; // Inactive slot
}
ProcessStackInfo[slot].sp = 0U;
*((uint32_t *)ProcessStackMemory[slot]) = ProcessStackFreeSlot;
ProcessStackFreeSlot = slot;
return 1U; // Success
}
/// Load secure context (called on RTOS thread context switch)
/// \param[in] id TrustZone memory slot identifier
/// \return execution status (1: success, 0: error)
__attribute__((cmse_nonsecure_entry))
uint32_t TZ_LoadContext_S (TZ_MemoryId_t id) {
uint32_t slot;
if ((__get_IPSR() == 0U) || ((__get_CONTROL() & 2U) == 0U)) {
return 0U; // Thread Mode or using Main Stack for threads
}
if ((id == 0U) || (id > TZ_PROCESS_STACK_SLOTS)) {
return 0U; // Invalid ID
}
slot = id - 1U;
if (ProcessStackInfo[slot].sp == 0U) {
return 0U; // Inactive slot
}
// Setup process stack pointer and stack limit
__set_PSPLIM(ProcessStackInfo[slot].sp_limit);
__set_PSP (ProcessStackInfo[slot].sp);
return 1U; // Success
}
/// Store secure context (called on RTOS thread context switch)
/// \param[in] id TrustZone memory slot identifier
/// \return execution status (1: success, 0: error)
__attribute__((cmse_nonsecure_entry))
uint32_t TZ_StoreContext_S (TZ_MemoryId_t id) {
uint32_t slot;
uint32_t sp;
if ((__get_IPSR() == 0U) || ((__get_CONTROL() & 2U) == 0U)) {
return 0U; // Thread Mode or using Main Stack for threads
}
if ((id == 0U) || (id > TZ_PROCESS_STACK_SLOTS)) {
return 0U; // Invalid ID
}
slot = id - 1U;
if (ProcessStackInfo[slot].sp == 0U) {
return 0U; // Inactive slot
}
sp = __get_PSP();
if ((sp < ProcessStackInfo[slot].sp_limit) ||
(sp > ProcessStackInfo[slot].sp_top)) {
return 0U; // SP out of range
}
ProcessStackInfo[slot].sp = sp;
// Default process stack pointer and stack limit
__set_PSPLIM((uint32_t)ProcessStackMemory);
__set_PSP ((uint32_t)ProcessStackMemory);
return 1U; // Success
}

View File

@ -0,0 +1,563 @@
/**************************************************************************//**
* @file cmsis_armcc.h
* @brief CMSIS compiler specific macros, functions, instructions
* @version V1.0.5
* @date 05. May 2021
******************************************************************************/
/*
* Copyright (c) 2009-2021 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __CMSIS_ARMCC_H
#define __CMSIS_ARMCC_H
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 400677)
#error "Please use Arm Compiler Toolchain V4.0.677 or later!"
#endif
/* CMSIS compiler control architecture macros */
#if (defined (__TARGET_ARCH_7_A ) && (__TARGET_ARCH_7_A == 1))
#define __ARM_ARCH_7A__ 1
#endif
/* CMSIS compiler specific defines */
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE __inline
#endif
#ifndef __FORCEINLINE
#define __FORCEINLINE __forceinline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static __inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE static __forceinline
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __declspec(noreturn)
#endif
#ifndef CMSIS_DEPRECATED
#define CMSIS_DEPRECATED __attribute__((deprecated))
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed))
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT __packed struct
#endif
#ifndef __UNALIGNED_UINT16_WRITE
#define __UNALIGNED_UINT16_WRITE(addr, val) ((*((__packed uint16_t *)(addr))) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
#define __UNALIGNED_UINT16_READ(addr) (*((const __packed uint16_t *)(addr)))
#endif
#ifndef __UNALIGNED_UINT32_WRITE
#define __UNALIGNED_UINT32_WRITE(addr, val) ((*((__packed uint32_t *)(addr))) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
#define __UNALIGNED_UINT32_READ(addr) (*((const __packed uint32_t *)(addr)))
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __attribute__((aligned(x)))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed))
#endif
#ifndef __COMPILER_BARRIER
#define __COMPILER_BARRIER() __memory_changed()
#endif
/* ########################## Core Instruction Access ######################### */
/**
\brief No Operation
*/
#define __NOP __nop
/**
\brief Wait For Interrupt
*/
#define __WFI __wfi
/**
\brief Wait For Event
*/
#define __WFE __wfe
/**
\brief Send Event
*/
#define __SEV __sev
/**
\brief Instruction Synchronization Barrier
*/
#define __ISB() __isb(0xF)
/**
\brief Data Synchronization Barrier
*/
#define __DSB() __dsb(0xF)
/**
\brief Data Memory Barrier
*/
#define __DMB() __dmb(0xF)
/**
\brief Reverse byte order (32 bit)
\details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
\param [in] value Value to reverse
\return Reversed value
*/
#define __REV __rev
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
\param [in] value Value to reverse
\return Reversed value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value)
{
rev16 r0, r0
bx lr
}
#endif
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
\param [in] value Value to reverse
\return Reversed value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int16_t __REVSH(int16_t value)
{
revsh r0, r0
bx lr
}
#endif
/**
\brief Rotate Right in unsigned value (32 bit)
\param [in] op1 Value to rotate
\param [in] op2 Number of Bits to rotate
\return Rotated value
*/
#define __ROR __ror
/**
\brief Breakpoint
\param [in] value is ignored by the processor.
If required, a debugger can use it to store additional information about the breakpoint.
*/
#define __BKPT(value) __breakpoint(value)
/**
\brief Reverse bit order of value
\param [in] value Value to reverse
\return Reversed value
*/
#define __RBIT __rbit
/**
\brief Count leading zeros
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
#define __CLZ __clz
/**
\brief LDR Exclusive (8 bit)
\details Executes a exclusive LDR instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr))
#else
#define __LDREXB(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint8_t ) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief LDR Exclusive (16 bit)
\details Executes a exclusive LDR instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXH(ptr) ((uint16_t) __ldrex(ptr))
#else
#define __LDREXH(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint16_t) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief LDR Exclusive (32 bit)
\details Executes a exclusive LDR instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr))
#else
#define __LDREXW(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint32_t ) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief STR Exclusive (8 bit)
\details Executes a exclusive STR instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXB(value, ptr) __strex(value, ptr)
#else
#define __STREXB(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief STR Exclusive (16 bit)
\details Executes a exclusive STR instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXH(value, ptr) __strex(value, ptr)
#else
#define __STREXH(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief STR Exclusive (32 bit)
\details Executes a exclusive STR instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXW(value, ptr) __strex(value, ptr)
#else
#define __STREXW(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief Remove the exclusive lock
\details Removes the exclusive lock which is created by LDREX.
*/
#define __CLREX __clrex
/**
\brief Signed Saturate
\details Saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT __ssat
/**
\brief Unsigned Saturate
\details Saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT __usat
/* ########################### Core Function Access ########################### */
/**
\brief Enable IRQ Interrupts
\details Enables IRQ interrupts by clearing the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
/* intrinsic void __enable_irq(); */
/**
\brief Disable IRQ Interrupts
\details Disables IRQ interrupts by setting the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
/* intrinsic void __disable_irq(void); */
/**
\brief Enable FIQ
\details Enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __enable_fault_irq __enable_fiq
/**
\brief Disable FIQ
\details Disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __disable_fault_irq __disable_fiq
/**
\brief Get FPSCR (Floating Point Status/Control)
\return Floating Point Status/Control register value
*/
__STATIC_INLINE uint32_t __get_FPSCR(void)
{
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
register uint32_t __regfpscr __ASM("fpscr");
return(__regfpscr);
#else
return(0U);
#endif
}
/**
\brief Set FPSCR (Floating Point Status/Control)
\param [in] fpscr Floating Point Status/Control value to set
*/
__STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
{
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
register uint32_t __regfpscr __ASM("fpscr");
__regfpscr = (fpscr);
#else
(void)fpscr;
#endif
}
/** \brief Get CPSR (Current Program Status Register)
\return CPSR Register value
*/
__STATIC_INLINE uint32_t __get_CPSR(void)
{
register uint32_t __regCPSR __ASM("cpsr");
return(__regCPSR);
}
/** \brief Set CPSR (Current Program Status Register)
\param [in] cpsr CPSR value to set
*/
__STATIC_INLINE void __set_CPSR(uint32_t cpsr)
{
register uint32_t __regCPSR __ASM("cpsr");
__regCPSR = cpsr;
}
/** \brief Get Mode
\return Processor Mode
*/
__STATIC_INLINE uint32_t __get_mode(void)
{
return (__get_CPSR() & 0x1FU);
}
/** \brief Set Mode
\param [in] mode Mode value to set
*/
__STATIC_INLINE __ASM void __set_mode(uint32_t mode)
{
MOV r1, lr
MSR CPSR_C, r0
BX r1
}
/** \brief Get Stack Pointer
\return Stack Pointer
*/
__STATIC_INLINE __ASM uint32_t __get_SP(void)
{
MOV r0, sp
BX lr
}
/** \brief Set Stack Pointer
\param [in] stack Stack Pointer value to set
*/
__STATIC_INLINE __ASM void __set_SP(uint32_t stack)
{
MOV sp, r0
BX lr
}
/** \brief Get USR/SYS Stack Pointer
\return USR/SYSStack Pointer
*/
__STATIC_INLINE __ASM uint32_t __get_SP_usr(void)
{
ARM
PRESERVE8
MRS R1, CPSR
CPS #0x1F ;no effect in USR mode
MOV R0, SP
MSR CPSR_c, R1 ;no effect in USR mode
ISB
BX LR
}
/** \brief Set USR/SYS Stack Pointer
\param [in] topOfProcStack USR/SYS Stack Pointer value to set
*/
__STATIC_INLINE __ASM void __set_SP_usr(uint32_t topOfProcStack)
{
ARM
PRESERVE8
MRS R1, CPSR
CPS #0x1F ;no effect in USR mode
MOV SP, R0
MSR CPSR_c, R1 ;no effect in USR mode
ISB
BX LR
}
/** \brief Get FPEXC (Floating Point Exception Control Register)
\return Floating Point Exception Control Register value
*/
__STATIC_INLINE uint32_t __get_FPEXC(void)
{
#if (__FPU_PRESENT == 1)
register uint32_t __regfpexc __ASM("fpexc");
return(__regfpexc);
#else
return(0);
#endif
}
/** \brief Set FPEXC (Floating Point Exception Control Register)
\param [in] fpexc Floating Point Exception Control value to set
*/
__STATIC_INLINE void __set_FPEXC(uint32_t fpexc)
{
#if (__FPU_PRESENT == 1)
register uint32_t __regfpexc __ASM("fpexc");
__regfpexc = (fpexc);
#endif
}
/*
* Include common core functions to access Coprocessor 15 registers
*/
#define __get_CP(cp, op1, Rt, CRn, CRm, op2) do { register volatile uint32_t tmp __ASM("cp" # cp ":" # op1 ":c" # CRn ":c" # CRm ":" # op2); (Rt) = tmp; } while(0)
#define __set_CP(cp, op1, Rt, CRn, CRm, op2) do { register volatile uint32_t tmp __ASM("cp" # cp ":" # op1 ":c" # CRn ":c" # CRm ":" # op2); tmp = (Rt); } while(0)
#define __get_CP64(cp, op1, Rt, CRm) \
do { \
uint32_t ltmp, htmp; \
__ASM volatile("MRRC p" # cp ", " # op1 ", ltmp, htmp, c" # CRm); \
(Rt) = ((((uint64_t)htmp) << 32U) | ((uint64_t)ltmp)); \
} while(0)
#define __set_CP64(cp, op1, Rt, CRm) \
do { \
const uint64_t tmp = (Rt); \
const uint32_t ltmp = (uint32_t)(tmp); \
const uint32_t htmp = (uint32_t)(tmp >> 32U); \
__ASM volatile("MCRR p" # cp ", " # op1 ", ltmp, htmp, c" # CRm); \
} while(0)
#include "cmsis_cp15.h"
/** \brief Enable Floating Point Unit
Critical section, called from undef handler, so systick is disabled
*/
__STATIC_INLINE __ASM void __FPU_Enable(void)
{
ARM
//Permit access to VFP/NEON, registers by modifying CPACR
MRC p15,0,R1,c1,c0,2
ORR R1,R1,#0x00F00000
MCR p15,0,R1,c1,c0,2
//Ensure that subsequent instructions occur in the context of VFP/NEON access permitted
ISB
//Enable VFP/NEON
VMRS R1,FPEXC
ORR R1,R1,#0x40000000
VMSR FPEXC,R1
//Initialise VFP/NEON registers to 0
MOV R2,#0
//Initialise D16 registers to 0
VMOV D0, R2,R2
VMOV D1, R2,R2
VMOV D2, R2,R2
VMOV D3, R2,R2
VMOV D4, R2,R2
VMOV D5, R2,R2
VMOV D6, R2,R2
VMOV D7, R2,R2
VMOV D8, R2,R2
VMOV D9, R2,R2
VMOV D10,R2,R2
VMOV D11,R2,R2
VMOV D12,R2,R2
VMOV D13,R2,R2
VMOV D14,R2,R2
VMOV D15,R2,R2
IF {TARGET_FEATURE_EXTENSION_REGISTER_COUNT} == 32
//Initialise D32 registers to 0
VMOV D16,R2,R2
VMOV D17,R2,R2
VMOV D18,R2,R2
VMOV D19,R2,R2
VMOV D20,R2,R2
VMOV D21,R2,R2
VMOV D22,R2,R2
VMOV D23,R2,R2
VMOV D24,R2,R2
VMOV D25,R2,R2
VMOV D26,R2,R2
VMOV D27,R2,R2
VMOV D28,R2,R2
VMOV D29,R2,R2
VMOV D30,R2,R2
VMOV D31,R2,R2
ENDIF
//Initialise FPSCR to a known state
VMRS R1,FPSCR
LDR R2,=0x00086060 //Mask off all bits that do not have to be preserved. Non-preserved bits can/should be zero.
AND R1,R1,R2
VMSR FPSCR,R1
BX LR
}
#endif /* __CMSIS_ARMCC_H */

View File

@ -0,0 +1,614 @@
/**************************************************************************//**
* @file cmsis_armclang.h
* @brief CMSIS compiler specific macros, functions, instructions
* @version V1.2.1
* @date 05. May 2021
******************************************************************************/
/*
* Copyright (c) 2009-2021 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __CMSIS_ARMCLANG_H
#define __CMSIS_ARMCLANG_H
#pragma clang system_header /* treat file as system include file */
/* CMSIS compiler specific defines */
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE __inline
#endif
#ifndef __FORCEINLINE
#define __FORCEINLINE __attribute__((always_inline))
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static __inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __attribute__((always_inline)) static __inline
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __attribute__((__noreturn__))
#endif
#ifndef CMSIS_DEPRECATED
#define CMSIS_DEPRECATED __attribute__((deprecated))
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed, aligned(1)))
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
#endif
#ifndef __UNALIGNED_UINT16_WRITE
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpacked"
/*lint -esym(9058, T_UINT16_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_WRITE */
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
#pragma clang diagnostic pop
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpacked"
/*lint -esym(9058, T_UINT16_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_READ */
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
#pragma clang diagnostic pop
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpacked"
/*lint -esym(9058, T_UINT32_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_WRITE */
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
#pragma clang diagnostic pop
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpacked"
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
#pragma clang diagnostic pop
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __attribute__((aligned(x)))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed))
#endif
#ifndef __COMPILER_BARRIER
#define __COMPILER_BARRIER() __ASM volatile("":::"memory")
#endif
/* ########################## Core Instruction Access ######################### */
/**
\brief No Operation
*/
#define __NOP __builtin_arm_nop
/**
\brief Wait For Interrupt
*/
#define __WFI __builtin_arm_wfi
/**
\brief Wait For Event
*/
#define __WFE __builtin_arm_wfe
/**
\brief Send Event
*/
#define __SEV __builtin_arm_sev
/**
\brief Instruction Synchronization Barrier
*/
#define __ISB() __builtin_arm_isb(0xF)
/**
\brief Data Synchronization Barrier
*/
#define __DSB() __builtin_arm_dsb(0xF)
/**
\brief Data Memory Barrier
*/
#define __DMB() __builtin_arm_dmb(0xF)
/**
\brief Reverse byte order (32 bit)
\details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
\param [in] value Value to reverse
\return Reversed value
*/
#define __REV(value) __builtin_bswap32(value)
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
\param [in] value Value to reverse
\return Reversed value
*/
#define __REV16(value) __ROR(__REV(value), 16)
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
\param [in] value Value to reverse
\return Reversed value
*/
#define __REVSH(value) (int16_t)__builtin_bswap16(value)
/**
\brief Rotate Right in unsigned value (32 bit)
\details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
\param [in] op1 Value to rotate
\param [in] op2 Number of Bits to rotate
\return Rotated value
*/
__STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
{
op2 %= 32U;
if (op2 == 0U)
{
return op1;
}
return (op1 >> op2) | (op1 << (32U - op2));
}
/**
\brief Breakpoint
\param [in] value is ignored by the processor.
If required, a debugger can use it to store additional information about the breakpoint.
*/
#define __BKPT(value) __ASM volatile ("bkpt "#value)
/**
\brief Reverse bit order of value
\param [in] value Value to reverse
\return Reversed value
*/
#define __RBIT __builtin_arm_rbit
/**
\brief Count leading zeros
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
__STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value)
{
/* Even though __builtin_clz produces a CLZ instruction on ARM, formally
__builtin_clz(0) is undefined behaviour, so handle this case specially.
This guarantees ARM-compatible results if happening to compile on a non-ARM
target, and ensures the compiler doesn't decide to activate any
optimisations using the logic "value was passed to __builtin_clz, so it
is non-zero".
ARM Compiler 6.10 and possibly earlier will optimise this test away, leaving a
single CLZ instruction.
*/
if (value == 0U)
{
return 32U;
}
return __builtin_clz(value);
}
/**
\brief LDR Exclusive (8 bit)
\details Executes a exclusive LDR instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#define __LDREXB (uint8_t)__builtin_arm_ldrex
/**
\brief LDR Exclusive (16 bit)
\details Executes a exclusive LDR instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#define __LDREXH (uint16_t)__builtin_arm_ldrex
/**
\brief LDR Exclusive (32 bit)
\details Executes a exclusive LDR instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#define __LDREXW (uint32_t)__builtin_arm_ldrex
/**
\brief STR Exclusive (8 bit)
\details Executes a exclusive STR instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXB (uint32_t)__builtin_arm_strex
/**
\brief STR Exclusive (16 bit)
\details Executes a exclusive STR instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXH (uint32_t)__builtin_arm_strex
/**
\brief STR Exclusive (32 bit)
\details Executes a exclusive STR instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXW (uint32_t)__builtin_arm_strex
/**
\brief Remove the exclusive lock
\details Removes the exclusive lock which is created by LDREX.
*/
#define __CLREX __builtin_arm_clrex
/**
\brief Signed Saturate
\details Saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT __builtin_arm_ssat
/**
\brief Unsigned Saturate
\details Saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT __builtin_arm_usat
/* ################### Compiler specific Intrinsics ########################### */
/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
Access to dedicated SIMD instructions
@{
*/
#if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
#define __SADD8 __builtin_arm_sadd8
#define __SADD16 __builtin_arm_sadd16
#define __QADD8 __builtin_arm_qadd8
#define __QSUB8 __builtin_arm_qsub8
#define __QADD16 __builtin_arm_qadd16
#define __SHADD16 __builtin_arm_shadd16
#define __QSUB16 __builtin_arm_qsub16
#define __SHSUB16 __builtin_arm_shsub16
#define __QASX __builtin_arm_qasx
#define __SHASX __builtin_arm_shasx
#define __QSAX __builtin_arm_qsax
#define __SHSAX __builtin_arm_shsax
#define __SXTB16 __builtin_arm_sxtb16
#define __SMUAD __builtin_arm_smuad
#define __SMUADX __builtin_arm_smuadx
#define __SMLAD __builtin_arm_smlad
#define __SMLADX __builtin_arm_smladx
#define __SMLALD __builtin_arm_smlald
#define __SMLALDX __builtin_arm_smlaldx
#define __SMUSD __builtin_arm_smusd
#define __SMUSDX __builtin_arm_smusdx
#define __SMLSDX __builtin_arm_smlsdx
#define __USAT16 __builtin_arm_usat16
#define __SSUB8 __builtin_arm_ssub8
#define __SXTB16 __builtin_arm_sxtb16
#define __SXTAB16 __builtin_arm_sxtab16
__STATIC_FORCEINLINE int32_t __QADD( int32_t op1, int32_t op2)
{
int32_t result;
__ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE int32_t __QSUB( int32_t op1, int32_t op2)
{
int32_t result;
__ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
__STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
{
int32_t result;
__ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
#endif /* (__ARM_FEATURE_DSP == 1) */
/* ########################### Core Function Access ########################### */
/**
\brief Enable IRQ Interrupts
\details Enables IRQ interrupts by clearing the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__STATIC_FORCEINLINE void __enable_irq(void)
{
__ASM volatile ("cpsie i" : : : "memory");
}
/**
\brief Disable IRQ Interrupts
\details Disables IRQ interrupts by setting the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__STATIC_FORCEINLINE void __disable_irq(void)
{
__ASM volatile ("cpsid i" : : : "memory");
}
/**
\brief Enable FIQ
\details Enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__STATIC_FORCEINLINE void __enable_fault_irq(void)
{
__ASM volatile ("cpsie f" : : : "memory");
}
/**
\brief Disable FIQ
\details Disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__STATIC_FORCEINLINE void __disable_fault_irq(void)
{
__ASM volatile ("cpsid f" : : : "memory");
}
/**
\brief Get FPSCR
\details Returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
#define __get_FPSCR __builtin_arm_get_fpscr
/**
\brief Set FPSCR
\details Assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
#define __set_FPSCR __builtin_arm_set_fpscr
/** \brief Get CPSR Register
\return CPSR Register value
*/
__STATIC_FORCEINLINE uint32_t __get_CPSR(void)
{
uint32_t result;
__ASM volatile("MRS %0, cpsr" : "=r" (result) );
return(result);
}
/** \brief Set CPSR Register
\param [in] cpsr CPSR value to set
*/
__STATIC_FORCEINLINE void __set_CPSR(uint32_t cpsr)
{
__ASM volatile ("MSR cpsr, %0" : : "r" (cpsr) : "cc", "memory");
}
/** \brief Get Mode
\return Processor Mode
*/
__STATIC_FORCEINLINE uint32_t __get_mode(void)
{
return (__get_CPSR() & 0x1FU);
}
/** \brief Set Mode
\param [in] mode Mode value to set
*/
__STATIC_FORCEINLINE void __set_mode(uint32_t mode)
{
__ASM volatile("MSR cpsr_c, %0" : : "r" (mode) : "memory");
}
/** \brief Get Stack Pointer
\return Stack Pointer value
*/
__STATIC_FORCEINLINE uint32_t __get_SP(void)
{
uint32_t result;
__ASM volatile("MOV %0, sp" : "=r" (result) : : "memory");
return result;
}
/** \brief Set Stack Pointer
\param [in] stack Stack Pointer value to set
*/
__STATIC_FORCEINLINE void __set_SP(uint32_t stack)
{
__ASM volatile("MOV sp, %0" : : "r" (stack) : "memory");
}
/** \brief Get USR/SYS Stack Pointer
\return USR/SYS Stack Pointer value
*/
__STATIC_FORCEINLINE uint32_t __get_SP_usr(void)
{
uint32_t cpsr;
uint32_t result;
__ASM volatile(
"MRS %0, cpsr \n"
"CPS #0x1F \n" // no effect in USR mode
"MOV %1, sp \n"
"MSR cpsr_c, %0 \n" // no effect in USR mode
"ISB" : "=r"(cpsr), "=r"(result) : : "memory"
);
return result;
}
/** \brief Set USR/SYS Stack Pointer
\param [in] topOfProcStack USR/SYS Stack Pointer value to set
*/
__STATIC_FORCEINLINE void __set_SP_usr(uint32_t topOfProcStack)
{
uint32_t cpsr;
__ASM volatile(
"MRS %0, cpsr \n"
"CPS #0x1F \n" // no effect in USR mode
"MOV sp, %1 \n"
"MSR cpsr_c, %0 \n" // no effect in USR mode
"ISB" : "=r"(cpsr) : "r" (topOfProcStack) : "memory"
);
}
/** \brief Get FPEXC
\return Floating Point Exception Control register value
*/
__STATIC_FORCEINLINE uint32_t __get_FPEXC(void)
{
#if (__FPU_PRESENT == 1)
uint32_t result;
__ASM volatile("VMRS %0, fpexc" : "=r" (result) : : "memory");
return(result);
#else
return(0);
#endif
}
/** \brief Set FPEXC
\param [in] fpexc Floating Point Exception Control value to set
*/
__STATIC_FORCEINLINE void __set_FPEXC(uint32_t fpexc)
{
#if (__FPU_PRESENT == 1)
__ASM volatile ("VMSR fpexc, %0" : : "r" (fpexc) : "memory");
#endif
}
/*
* Include common core functions to access Coprocessor 15 registers
*/
#define __get_CP(cp, op1, Rt, CRn, CRm, op2) __ASM volatile("MRC p" # cp ", " # op1 ", %0, c" # CRn ", c" # CRm ", " # op2 : "=r" (Rt) : : "memory" )
#define __set_CP(cp, op1, Rt, CRn, CRm, op2) __ASM volatile("MCR p" # cp ", " # op1 ", %0, c" # CRn ", c" # CRm ", " # op2 : : "r" (Rt) : "memory" )
#define __get_CP64(cp, op1, Rt, CRm) __ASM volatile("MRRC p" # cp ", " # op1 ", %Q0, %R0, c" # CRm : "=r" (Rt) : : "memory" )
#define __set_CP64(cp, op1, Rt, CRm) __ASM volatile("MCRR p" # cp ", " # op1 ", %Q0, %R0, c" # CRm : : "r" (Rt) : "memory" )
#include "cmsis_cp15.h"
/** \brief Enable Floating Point Unit
Critical section, called from undef handler, so systick is disabled
*/
__STATIC_INLINE void __FPU_Enable(void)
{
__ASM volatile(
//Permit access to VFP/NEON, registers by modifying CPACR
" MRC p15,0,R1,c1,c0,2 \n"
" ORR R1,R1,#0x00F00000 \n"
" MCR p15,0,R1,c1,c0,2 \n"
//Ensure that subsequent instructions occur in the context of VFP/NEON access permitted
" ISB \n"
//Enable VFP/NEON
" VMRS R1,FPEXC \n"
" ORR R1,R1,#0x40000000 \n"
" VMSR FPEXC,R1 \n"
//Initialise VFP/NEON registers to 0
" MOV R2,#0 \n"
//Initialise D16 registers to 0
" VMOV D0, R2,R2 \n"
" VMOV D1, R2,R2 \n"
" VMOV D2, R2,R2 \n"
" VMOV D3, R2,R2 \n"
" VMOV D4, R2,R2 \n"
" VMOV D5, R2,R2 \n"
" VMOV D6, R2,R2 \n"
" VMOV D7, R2,R2 \n"
" VMOV D8, R2,R2 \n"
" VMOV D9, R2,R2 \n"
" VMOV D10,R2,R2 \n"
" VMOV D11,R2,R2 \n"
" VMOV D12,R2,R2 \n"
" VMOV D13,R2,R2 \n"
" VMOV D14,R2,R2 \n"
" VMOV D15,R2,R2 \n"
#if (defined(__ARM_NEON) && (__ARM_NEON == 1))
//Initialise D32 registers to 0
" VMOV D16,R2,R2 \n"
" VMOV D17,R2,R2 \n"
" VMOV D18,R2,R2 \n"
" VMOV D19,R2,R2 \n"
" VMOV D20,R2,R2 \n"
" VMOV D21,R2,R2 \n"
" VMOV D22,R2,R2 \n"
" VMOV D23,R2,R2 \n"
" VMOV D24,R2,R2 \n"
" VMOV D25,R2,R2 \n"
" VMOV D26,R2,R2 \n"
" VMOV D27,R2,R2 \n"
" VMOV D28,R2,R2 \n"
" VMOV D29,R2,R2 \n"
" VMOV D30,R2,R2 \n"
" VMOV D31,R2,R2 \n"
#endif
//Initialise FPSCR to a known state
" VMRS R1,FPSCR \n"
" LDR R2,=0x00086060 \n" //Mask off all bits that do not have to be preserved. Non-preserved bits can/should be zero.
" AND R1,R1,R2 \n"
" VMSR FPSCR,R1 "
: : : "cc", "r1", "r2"
);
}
#endif /* __CMSIS_ARMCLANG_H */

View File

@ -0,0 +1,213 @@
/**************************************************************************//**
* @file cmsis_compiler.h
* @brief CMSIS compiler specific macros, functions, instructions
* @version V1.0.2
* @date 10. January 2018
******************************************************************************/
/*
* Copyright (c) 2009-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __CMSIS_COMPILER_H
#define __CMSIS_COMPILER_H
#include <stdint.h>
/*
* Arm Compiler 4/5
*/
#if defined ( __CC_ARM )
#include "cmsis_armcc.h"
/*
* Arm Compiler 6 (armclang)
*/
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
#include "cmsis_armclang.h"
/*
* GNU Compiler
*/
#elif defined ( __GNUC__ )
#include "cmsis_gcc.h"
/*
* IAR Compiler
*/
#elif defined ( __ICCARM__ )
#include "cmsis_iccarm.h"
/*
* TI Arm Compiler
*/
#elif defined ( __TI_ARM__ )
#include <cmsis_ccs.h>
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __STATIC_INLINE
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __attribute__((noreturn))
#endif
#ifndef CMSIS_DEPRECATED
#define CMSIS_DEPRECATED __attribute__((deprecated))
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __UNALIGNED_UINT32
struct __attribute__((packed)) T_UINT32 { uint32_t v; };
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __attribute__((aligned(x)))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed))
#endif
#ifndef __COMPILER_BARRIER
#warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored.
#define __COMPILER_BARRIER() (void)0
#endif
/*
* TASKING Compiler
*/
#elif defined ( __TASKING__ )
/*
* The CMSIS functions have been implemented as intrinsics in the compiler.
* Please use "carm -?i" to get an up to date list of all intrinsics,
* Including the CMSIS ones.
*/
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __STATIC_INLINE
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __attribute__((noreturn))
#endif
#ifndef CMSIS_DEPRECATED
#define CMSIS_DEPRECATED __attribute__((deprecated))
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __UNALIGNED_UINT32
struct __packed__ T_UINT32 { uint32_t v; };
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __align(x)
#endif
#ifndef __PACKED
#define __PACKED __packed__
#endif
#ifndef __COMPILER_BARRIER
#warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored.
#define __COMPILER_BARRIER() (void)0
#endif
/*
* COSMIC Compiler
*/
#elif defined ( __CSMC__ )
#include <cmsis_csm.h>
#ifndef __ASM
#define __ASM _asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __STATIC_INLINE
#endif
#ifndef __NO_RETURN
// NO RETURN is automatically detected hence no warning here
#define __NO_RETURN
#endif
#ifndef __USED
#warning No compiler specific solution for __USED. __USED is ignored.
#define __USED
#endif
#ifndef CMSIS_DEPRECATED
#warning No compiler specific solution for CMSIS_DEPRECATED. CMSIS_DEPRECATED is ignored.
#define CMSIS_DEPRECATED
#endif
#ifndef __WEAK
#define __WEAK __weak
#endif
#ifndef __UNALIGNED_UINT32
@packed struct T_UINT32 { uint32_t v; };
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
#endif
#ifndef __ALIGNED
#warning No compiler specific solution for __ALIGNED. __ALIGNED is ignored.
#define __ALIGNED(x)
#endif
#ifndef __PACKED
#define __PACKED @packed
#endif
#ifndef __COMPILER_BARRIER
#warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored.
#define __COMPILER_BARRIER() (void)0
#endif
#else
#error Unknown compiler.
#endif
#endif /* __CMSIS_COMPILER_H */

View File

@ -0,0 +1,514 @@
/**************************************************************************//**
* @file cmsis_cp15.h
* @brief CMSIS compiler specific macros, functions, instructions
* @version V1.0.1
* @date 07. Sep 2017
******************************************************************************/
/*
* Copyright (c) 2009-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef __CMSIS_CP15_H
#define __CMSIS_CP15_H
/** \brief Get ACTLR
\return Auxiliary Control register value
*/
__STATIC_FORCEINLINE uint32_t __get_ACTLR(void)
{
uint32_t result;
__get_CP(15, 0, result, 1, 0, 1);
return(result);
}
/** \brief Set ACTLR
\param [in] actlr Auxiliary Control value to set
*/
__STATIC_FORCEINLINE void __set_ACTLR(uint32_t actlr)
{
__set_CP(15, 0, actlr, 1, 0, 1);
}
/** \brief Get CPACR
\return Coprocessor Access Control register value
*/
__STATIC_FORCEINLINE uint32_t __get_CPACR(void)
{
uint32_t result;
__get_CP(15, 0, result, 1, 0, 2);
return result;
}
/** \brief Set CPACR
\param [in] cpacr Coprocessor Access Control value to set
*/
__STATIC_FORCEINLINE void __set_CPACR(uint32_t cpacr)
{
__set_CP(15, 0, cpacr, 1, 0, 2);
}
/** \brief Get DFSR
\return Data Fault Status Register value
*/
__STATIC_FORCEINLINE uint32_t __get_DFSR(void)
{
uint32_t result;
__get_CP(15, 0, result, 5, 0, 0);
return result;
}
/** \brief Set DFSR
\param [in] dfsr Data Fault Status value to set
*/
__STATIC_FORCEINLINE void __set_DFSR(uint32_t dfsr)
{
__set_CP(15, 0, dfsr, 5, 0, 0);
}
/** \brief Get IFSR
\return Instruction Fault Status Register value
*/
__STATIC_FORCEINLINE uint32_t __get_IFSR(void)
{
uint32_t result;
__get_CP(15, 0, result, 5, 0, 1);
return result;
}
/** \brief Set IFSR
\param [in] ifsr Instruction Fault Status value to set
*/
__STATIC_FORCEINLINE void __set_IFSR(uint32_t ifsr)
{
__set_CP(15, 0, ifsr, 5, 0, 1);
}
/** \brief Get ISR
\return Interrupt Status Register value
*/
__STATIC_FORCEINLINE uint32_t __get_ISR(void)
{
uint32_t result;
__get_CP(15, 0, result, 12, 1, 0);
return result;
}
/** \brief Get CBAR
\return Configuration Base Address register value
*/
__STATIC_FORCEINLINE uint32_t __get_CBAR(void)
{
uint32_t result;
__get_CP(15, 4, result, 15, 0, 0);
return result;
}
/** \brief Get TTBR0
This function returns the value of the Translation Table Base Register 0.
\return Translation Table Base Register 0 value
*/
__STATIC_FORCEINLINE uint32_t __get_TTBR0(void)
{
uint32_t result;
__get_CP(15, 0, result, 2, 0, 0);
return result;
}
/** \brief Set TTBR0
This function assigns the given value to the Translation Table Base Register 0.
\param [in] ttbr0 Translation Table Base Register 0 value to set
*/
__STATIC_FORCEINLINE void __set_TTBR0(uint32_t ttbr0)
{
__set_CP(15, 0, ttbr0, 2, 0, 0);
}
/** \brief Get DACR
This function returns the value of the Domain Access Control Register.
\return Domain Access Control Register value
*/
__STATIC_FORCEINLINE uint32_t __get_DACR(void)
{
uint32_t result;
__get_CP(15, 0, result, 3, 0, 0);
return result;
}
/** \brief Set DACR
This function assigns the given value to the Domain Access Control Register.
\param [in] dacr Domain Access Control Register value to set
*/
__STATIC_FORCEINLINE void __set_DACR(uint32_t dacr)
{
__set_CP(15, 0, dacr, 3, 0, 0);
}
/** \brief Set SCTLR
This function assigns the given value to the System Control Register.
\param [in] sctlr System Control Register value to set
*/
__STATIC_FORCEINLINE void __set_SCTLR(uint32_t sctlr)
{
__set_CP(15, 0, sctlr, 1, 0, 0);
}
/** \brief Get SCTLR
\return System Control Register value
*/
__STATIC_FORCEINLINE uint32_t __get_SCTLR(void)
{
uint32_t result;
__get_CP(15, 0, result, 1, 0, 0);
return result;
}
/** \brief Set ACTRL
\param [in] actrl Auxiliary Control Register value to set
*/
__STATIC_FORCEINLINE void __set_ACTRL(uint32_t actrl)
{
__set_CP(15, 0, actrl, 1, 0, 1);
}
/** \brief Get ACTRL
\return Auxiliary Control Register value
*/
__STATIC_FORCEINLINE uint32_t __get_ACTRL(void)
{
uint32_t result;
__get_CP(15, 0, result, 1, 0, 1);
return result;
}
/** \brief Get MPIDR
This function returns the value of the Multiprocessor Affinity Register.
\return Multiprocessor Affinity Register value
*/
__STATIC_FORCEINLINE uint32_t __get_MPIDR(void)
{
uint32_t result;
__get_CP(15, 0, result, 0, 0, 5);
return result;
}
/** \brief Get VBAR
This function returns the value of the Vector Base Address Register.
\return Vector Base Address Register
*/
__STATIC_FORCEINLINE uint32_t __get_VBAR(void)
{
uint32_t result;
__get_CP(15, 0, result, 12, 0, 0);
return result;
}
/** \brief Set VBAR
This function assigns the given value to the Vector Base Address Register.
\param [in] vbar Vector Base Address Register value to set
*/
__STATIC_FORCEINLINE void __set_VBAR(uint32_t vbar)
{
__set_CP(15, 0, vbar, 12, 0, 0);
}
/** \brief Get MVBAR
This function returns the value of the Monitor Vector Base Address Register.
\return Monitor Vector Base Address Register
*/
__STATIC_FORCEINLINE uint32_t __get_MVBAR(void)
{
uint32_t result;
__get_CP(15, 0, result, 12, 0, 1);
return result;
}
/** \brief Set MVBAR
This function assigns the given value to the Monitor Vector Base Address Register.
\param [in] mvbar Monitor Vector Base Address Register value to set
*/
__STATIC_FORCEINLINE void __set_MVBAR(uint32_t mvbar)
{
__set_CP(15, 0, mvbar, 12, 0, 1);
}
#if (defined(__CORTEX_A) && (__CORTEX_A == 7U) && \
defined(__TIM_PRESENT) && (__TIM_PRESENT == 1U)) || \
defined(DOXYGEN)
/** \brief Set CNTFRQ
This function assigns the given value to PL1 Physical Timer Counter Frequency Register (CNTFRQ).
\param [in] value CNTFRQ Register value to set
*/
__STATIC_FORCEINLINE void __set_CNTFRQ(uint32_t value)
{
__set_CP(15, 0, value, 14, 0, 0);
}
/** \brief Get CNTFRQ
This function returns the value of the PL1 Physical Timer Counter Frequency Register (CNTFRQ).
\return CNTFRQ Register value
*/
__STATIC_FORCEINLINE uint32_t __get_CNTFRQ(void)
{
uint32_t result;
__get_CP(15, 0, result, 14, 0 , 0);
return result;
}
/** \brief Set CNTP_TVAL
This function assigns the given value to PL1 Physical Timer Value Register (CNTP_TVAL).
\param [in] value CNTP_TVAL Register value to set
*/
__STATIC_FORCEINLINE void __set_CNTP_TVAL(uint32_t value)
{
__set_CP(15, 0, value, 14, 2, 0);
}
/** \brief Get CNTP_TVAL
This function returns the value of the PL1 Physical Timer Value Register (CNTP_TVAL).
\return CNTP_TVAL Register value
*/
__STATIC_FORCEINLINE uint32_t __get_CNTP_TVAL(void)
{
uint32_t result;
__get_CP(15, 0, result, 14, 2, 0);
return result;
}
/** \brief Get CNTPCT
This function returns the value of the 64 bits PL1 Physical Count Register (CNTPCT).
\return CNTPCT Register value
*/
__STATIC_FORCEINLINE uint64_t __get_CNTPCT(void)
{
uint64_t result;
__get_CP64(15, 0, result, 14);
return result;
}
/** \brief Set CNTP_CVAL
This function assigns the given value to 64bits PL1 Physical Timer CompareValue Register (CNTP_CVAL).
\param [in] value CNTP_CVAL Register value to set
*/
__STATIC_FORCEINLINE void __set_CNTP_CVAL(uint64_t value)
{
__set_CP64(15, 2, value, 14);
}
/** \brief Get CNTP_CVAL
This function returns the value of the 64 bits PL1 Physical Timer CompareValue Register (CNTP_CVAL).
\return CNTP_CVAL Register value
*/
__STATIC_FORCEINLINE uint64_t __get_CNTP_CVAL(void)
{
uint64_t result;
__get_CP64(15, 2, result, 14);
return result;
}
/** \brief Set CNTP_CTL
This function assigns the given value to PL1 Physical Timer Control Register (CNTP_CTL).
\param [in] value CNTP_CTL Register value to set
*/
__STATIC_FORCEINLINE void __set_CNTP_CTL(uint32_t value)
{
__set_CP(15, 0, value, 14, 2, 1);
}
/** \brief Get CNTP_CTL register
\return CNTP_CTL Register value
*/
__STATIC_FORCEINLINE uint32_t __get_CNTP_CTL(void)
{
uint32_t result;
__get_CP(15, 0, result, 14, 2, 1);
return result;
}
#endif
/** \brief Set TLBIALL
TLB Invalidate All
*/
__STATIC_FORCEINLINE void __set_TLBIALL(uint32_t value)
{
__set_CP(15, 0, value, 8, 7, 0);
}
/** \brief Set BPIALL.
Branch Predictor Invalidate All
*/
__STATIC_FORCEINLINE void __set_BPIALL(uint32_t value)
{
__set_CP(15, 0, value, 7, 5, 6);
}
/** \brief Set ICIALLU
Instruction Cache Invalidate All
*/
__STATIC_FORCEINLINE void __set_ICIALLU(uint32_t value)
{
__set_CP(15, 0, value, 7, 5, 0);
}
/** \brief Set DCCMVAC
Data cache clean
*/
__STATIC_FORCEINLINE void __set_DCCMVAC(uint32_t value)
{
__set_CP(15, 0, value, 7, 10, 1);
}
/** \brief Set DCIMVAC
Data cache invalidate
*/
__STATIC_FORCEINLINE void __set_DCIMVAC(uint32_t value)
{
__set_CP(15, 0, value, 7, 6, 1);
}
/** \brief Set DCCIMVAC
Data cache clean and invalidate
*/
__STATIC_FORCEINLINE void __set_DCCIMVAC(uint32_t value)
{
__set_CP(15, 0, value, 7, 14, 1);
}
/** \brief Set CSSELR
*/
__STATIC_FORCEINLINE void __set_CSSELR(uint32_t value)
{
// __ASM volatile("MCR p15, 2, %0, c0, c0, 0" : : "r"(value) : "memory");
__set_CP(15, 2, value, 0, 0, 0);
}
/** \brief Get CSSELR
\return CSSELR Register value
*/
__STATIC_FORCEINLINE uint32_t __get_CSSELR(void)
{
uint32_t result;
// __ASM volatile("MRC p15, 2, %0, c0, c0, 0" : "=r"(result) : : "memory");
__get_CP(15, 2, result, 0, 0, 0);
return result;
}
/** \brief Set CCSIDR
\deprecated CCSIDR itself is read-only. Use __set_CSSELR to select cache level instead.
*/
CMSIS_DEPRECATED
__STATIC_FORCEINLINE void __set_CCSIDR(uint32_t value)
{
__set_CSSELR(value);
}
/** \brief Get CCSIDR
\return CCSIDR Register value
*/
__STATIC_FORCEINLINE uint32_t __get_CCSIDR(void)
{
uint32_t result;
// __ASM volatile("MRC p15, 1, %0, c0, c0, 0" : "=r"(result) : : "memory");
__get_CP(15, 1, result, 0, 0, 0);
return result;
}
/** \brief Get CLIDR
\return CLIDR Register value
*/
__STATIC_FORCEINLINE uint32_t __get_CLIDR(void)
{
uint32_t result;
// __ASM volatile("MRC p15, 1, %0, c0, c0, 1" : "=r"(result) : : "memory");
__get_CP(15, 1, result, 0, 0, 1);
return result;
}
/** \brief Set DCISW
*/
__STATIC_FORCEINLINE void __set_DCISW(uint32_t value)
{
// __ASM volatile("MCR p15, 0, %0, c7, c6, 2" : : "r"(value) : "memory")
__set_CP(15, 0, value, 7, 6, 2);
}
/** \brief Set DCCSW
*/
__STATIC_FORCEINLINE void __set_DCCSW(uint32_t value)
{
// __ASM volatile("MCR p15, 0, %0, c7, c10, 2" : : "r"(value) : "memory")
__set_CP(15, 0, value, 7, 10, 2);
}
/** \brief Set DCCISW
*/
__STATIC_FORCEINLINE void __set_DCCISW(uint32_t value)
{
// __ASM volatile("MCR p15, 0, %0, c7, c14, 2" : : "r"(value) : "memory")
__set_CP(15, 0, value, 7, 14, 2);
}
#endif

View File

@ -0,0 +1,917 @@
/**************************************************************************//**
* @file cmsis_gcc.h
* @brief CMSIS compiler specific macros, functions, instructions
* @version V1.3.2
* @date 24. March 2022
******************************************************************************/
/*
* Copyright (c) 2009-2022 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __CMSIS_GCC_H
#define __CMSIS_GCC_H
/* ignore some GCC warnings */
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-conversion"
#pragma GCC diagnostic ignored "-Wconversion"
#pragma GCC diagnostic ignored "-Wunused-parameter"
/* Fallback for __has_builtin */
#ifndef __has_builtin
#define __has_builtin(x) (0)
#endif
/* CMSIS compiler specific defines */
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __FORCEINLINE
#define __FORCEINLINE __attribute__((always_inline))
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __attribute__((always_inline)) static inline
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __attribute__((__noreturn__))
#endif
#ifndef CMSIS_DEPRECATED
#define CMSIS_DEPRECATED __attribute__((deprecated))
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed, aligned(1)))
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
#endif
#ifndef __UNALIGNED_UINT16_WRITE
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpacked"
/*lint -esym(9058, T_UINT16_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_WRITE */
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
#pragma GCC diagnostic pop
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpacked"
/*lint -esym(9058, T_UINT16_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_READ */
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
#pragma GCC diagnostic pop
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpacked"
/*lint -esym(9058, T_UINT32_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_WRITE */
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
#pragma GCC diagnostic pop
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpacked"
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
#pragma GCC diagnostic pop
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __attribute__((aligned(x)))
#endif
#ifndef __COMPILER_BARRIER
#define __COMPILER_BARRIER() __ASM volatile("":::"memory")
#endif
__STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE int32_t __QADD( int32_t op1, int32_t op2)
{
int32_t result;
__ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
{
union llreg_u{
uint32_t w32[2];
uint64_t w64;
} llr;
llr.w64 = acc;
#ifndef __ARMEB__ /* Little endian */
__ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
#else /* Big endian */
__ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
#endif
return(llr.w64);
}
__STATIC_FORCEINLINE int32_t __QSUB( int32_t op1, int32_t op2)
{
int32_t result;
__ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1)
{
uint32_t result;
__ASM ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
return(result);
}
__STATIC_FORCEINLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
__STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
__STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
{
union llreg_u{
uint32_t w32[2];
uint64_t w64;
} llr;
llr.w64 = acc;
#ifndef __ARMEB__ /* Little endian */
__ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
#else /* Big endian */
__ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
#endif
return(llr.w64);
}
__STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
{
int32_t result;
__ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
/* ########################## Core Instruction Access ######################### */
/**
\brief No Operation
*/
#define __NOP() __ASM volatile ("nop")
/**
\brief Wait For Interrupt
*/
#define __WFI() __ASM volatile ("wfi":::"memory")
/**
\brief Wait For Event
*/
#define __WFE() __ASM volatile ("wfe":::"memory")
/**
\brief Send Event
*/
#define __SEV() __ASM volatile ("sev")
/**
\brief Instruction Synchronization Barrier
\details Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or memory,
after the instruction has been completed.
*/
__STATIC_FORCEINLINE void __ISB(void)
{
__ASM volatile ("isb 0xF":::"memory");
}
/**
\brief Data Synchronization Barrier
\details Acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
__STATIC_FORCEINLINE void __DSB(void)
{
__ASM volatile ("dsb 0xF":::"memory");
}
/**
\brief Data Memory Barrier
\details Ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
__STATIC_FORCEINLINE void __DMB(void)
{
__ASM volatile ("dmb 0xF":::"memory");
}
/**
\brief Reverse byte order (32 bit)
\details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
\param [in] value Value to reverse
\return Reversed value
*/
__STATIC_FORCEINLINE uint32_t __REV(uint32_t value)
{
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
return __builtin_bswap32(value);
#else
uint32_t result;
__ASM ("rev %0, %1" : "=r" (result) : "r" (value) );
return result;
#endif
}
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
\param [in] value Value to reverse
\return Reversed value
*/
__STATIC_FORCEINLINE uint32_t __REV16(uint32_t value)
{
uint32_t result;
__ASM ("rev16 %0, %1" : "=r" (result) : "r" (value));
return result;
}
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
\param [in] value Value to reverse
\return Reversed value
*/
__STATIC_FORCEINLINE int16_t __REVSH(int16_t value)
{
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
return (int16_t)__builtin_bswap16(value);
#else
int16_t result;
__ASM ("revsh %0, %1" : "=r" (result) : "r" (value) );
return result;
#endif
}
/**
\brief Rotate Right in unsigned value (32 bit)
\details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
\param [in] op1 Value to rotate
\param [in] op2 Number of Bits to rotate
\return Rotated value
*/
__STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
{
op2 %= 32U;
if (op2 == 0U)
{
return op1;
}
return (op1 >> op2) | (op1 << (32U - op2));
}
/**
\brief Breakpoint
\param [in] value is ignored by the processor.
If required, a debugger can use it to store additional information about the breakpoint.
*/
#define __BKPT(value) __ASM volatile ("bkpt "#value)
/**
\brief Reverse bit order of value
\details Reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
__STATIC_FORCEINLINE uint32_t __RBIT(uint32_t value)
{
uint32_t result;
__ASM ("rbit %0, %1" : "=r" (result) : "r" (value) );
return result;
}
/**
\brief Count leading zeros
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
__STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value)
{
/* Even though __builtin_clz produces a CLZ instruction on ARM, formally
__builtin_clz(0) is undefined behaviour, so handle this case specially.
This guarantees ARM-compatible results if happening to compile on a non-ARM
target, and ensures the compiler doesn't decide to activate any
optimisations using the logic "value was passed to __builtin_clz, so it
is non-zero".
ARM GCC 7.3 and possibly earlier will optimise this test away, leaving a
single CLZ instruction.
*/
if (value == 0U)
{
return 32U;
}
return __builtin_clz(value);
}
/**
\brief LDR Exclusive (8 bit)
\details Executes a exclusive LDR instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
__STATIC_FORCEINLINE uint8_t __LDREXB(volatile uint8_t *addr)
{
uint32_t result;
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
__ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
#else
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
accepted by assembler. So has to use following less efficient pattern.
*/
__ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
#endif
return ((uint8_t) result); /* Add explicit type cast here */
}
/**
\brief LDR Exclusive (16 bit)
\details Executes a exclusive LDR instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
__STATIC_FORCEINLINE uint16_t __LDREXH(volatile uint16_t *addr)
{
uint32_t result;
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
__ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
#else
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
accepted by assembler. So has to use following less efficient pattern.
*/
__ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
#endif
return ((uint16_t) result); /* Add explicit type cast here */
}
/**
\brief LDR Exclusive (32 bit)
\details Executes a exclusive LDR instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
__STATIC_FORCEINLINE uint32_t __LDREXW(volatile uint32_t *addr)
{
uint32_t result;
__ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
return(result);
}
/**
\brief STR Exclusive (8 bit)
\details Executes a exclusive STR instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__STATIC_FORCEINLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
{
uint32_t result;
__ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
return(result);
}
/**
\brief STR Exclusive (16 bit)
\details Executes a exclusive STR instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__STATIC_FORCEINLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
{
uint32_t result;
__ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
return(result);
}
/**
\brief STR Exclusive (32 bit)
\details Executes a exclusive STR instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__STATIC_FORCEINLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
{
uint32_t result;
__ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
return(result);
}
/**
\brief Remove the exclusive lock
\details Removes the exclusive lock which is created by LDREX.
*/
__STATIC_FORCEINLINE void __CLREX(void)
{
__ASM volatile ("clrex" ::: "memory");
}
/**
\brief Signed Saturate
\details Saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT(ARG1, ARG2) \
__extension__ \
({ \
int32_t __RES, __ARG1 = (ARG1); \
__ASM volatile ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) : "cc" ); \
__RES; \
})
/**
\brief Unsigned Saturate
\details Saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT(ARG1, ARG2) \
__extension__ \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM volatile ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) : "cc" ); \
__RES; \
})
/* ########################### Core Function Access ########################### */
/**
\brief Enable IRQ Interrupts
\details Enables IRQ interrupts by clearing the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__STATIC_FORCEINLINE void __enable_irq(void)
{
__ASM volatile ("cpsie i" : : : "memory");
}
/**
\brief Disable IRQ Interrupts
\details Disables IRQ interrupts by setting the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__STATIC_FORCEINLINE void __disable_irq(void)
{
__ASM volatile ("cpsid i" : : : "memory");
}
/**
\brief Enable FIQ
\details Enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__STATIC_FORCEINLINE void __enable_fault_irq(void)
{
__ASM volatile ("cpsie f" : : : "memory");
}
/**
\brief Disable FIQ
\details Disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__STATIC_FORCEINLINE void __disable_fault_irq(void)
{
__ASM volatile ("cpsid f" : : : "memory");
}
/**
\brief Get FPSCR
\details Returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
__STATIC_FORCEINLINE uint32_t __get_FPSCR(void)
{
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
#if __has_builtin(__builtin_arm_get_fpscr)
// Re-enable using built-in when GCC has been fixed
// || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
/* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
return __builtin_arm_get_fpscr();
#else
uint32_t result;
__ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
return(result);
#endif
#else
return(0U);
#endif
}
/**
\brief Set FPSCR
\details Assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
__STATIC_FORCEINLINE void __set_FPSCR(uint32_t fpscr)
{
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
#if __has_builtin(__builtin_arm_set_fpscr)
// Re-enable using built-in when GCC has been fixed
// || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
/* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
__builtin_arm_set_fpscr(fpscr);
#else
__ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc", "memory");
#endif
#else
(void)fpscr;
#endif
}
/** \brief Get CPSR Register
\return CPSR Register value
*/
__STATIC_FORCEINLINE uint32_t __get_CPSR(void)
{
uint32_t result;
__ASM volatile("MRS %0, cpsr" : "=r" (result) );
return(result);
}
/** \brief Set CPSR Register
\param [in] cpsr CPSR value to set
*/
__STATIC_FORCEINLINE void __set_CPSR(uint32_t cpsr)
{
__ASM volatile ("MSR cpsr, %0" : : "r" (cpsr) : "cc", "memory");
}
/** \brief Get Mode
\return Processor Mode
*/
__STATIC_FORCEINLINE uint32_t __get_mode(void)
{
return (__get_CPSR() & 0x1FU);
}
/** \brief Set Mode
\param [in] mode Mode value to set
*/
__STATIC_FORCEINLINE void __set_mode(uint32_t mode)
{
__ASM volatile("MSR cpsr_c, %0" : : "r" (mode) : "memory");
}
/** \brief Get Stack Pointer
\return Stack Pointer value
*/
__STATIC_FORCEINLINE uint32_t __get_SP(void)
{
uint32_t result;
__ASM volatile("MOV %0, sp" : "=r" (result) : : "memory");
return result;
}
/** \brief Set Stack Pointer
\param [in] stack Stack Pointer value to set
*/
__STATIC_FORCEINLINE void __set_SP(uint32_t stack)
{
__ASM volatile("MOV sp, %0" : : "r" (stack) : "memory");
}
/** \brief Get USR/SYS Stack Pointer
\return USR/SYS Stack Pointer value
*/
__STATIC_FORCEINLINE uint32_t __get_SP_usr(void)
{
uint32_t cpsr = __get_CPSR();
uint32_t result;
__ASM volatile(
"CPS #0x1F \n"
"MOV %0, sp " : "=r"(result) : : "memory"
);
__set_CPSR(cpsr);
__ISB();
return result;
}
/** \brief Set USR/SYS Stack Pointer
\param [in] topOfProcStack USR/SYS Stack Pointer value to set
*/
__STATIC_FORCEINLINE void __set_SP_usr(uint32_t topOfProcStack)
{
uint32_t cpsr = __get_CPSR();
__ASM volatile(
"CPS #0x1F \n"
"MOV sp, %0 " : : "r" (topOfProcStack) : "memory"
);
__set_CPSR(cpsr);
__ISB();
}
/** \brief Get FPEXC
\return Floating Point Exception Control register value
*/
__STATIC_FORCEINLINE uint32_t __get_FPEXC(void)
{
#if (__FPU_PRESENT == 1)
uint32_t result;
__ASM volatile("VMRS %0, fpexc" : "=r" (result) : : "memory");
return(result);
#else
return(0);
#endif
}
/** \brief Set FPEXC
\param [in] fpexc Floating Point Exception Control value to set
*/
__STATIC_FORCEINLINE void __set_FPEXC(uint32_t fpexc)
{
#if (__FPU_PRESENT == 1)
__ASM volatile ("VMSR fpexc, %0" : : "r" (fpexc) : "memory");
#endif
}
/*
* Include common core functions to access Coprocessor 15 registers
*/
#define __get_CP(cp, op1, Rt, CRn, CRm, op2) __ASM volatile("MRC p" # cp ", " # op1 ", %0, c" # CRn ", c" # CRm ", " # op2 : "=r" (Rt) : : "memory" )
#define __set_CP(cp, op1, Rt, CRn, CRm, op2) __ASM volatile("MCR p" # cp ", " # op1 ", %0, c" # CRn ", c" # CRm ", " # op2 : : "r" (Rt) : "memory" )
#define __get_CP64(cp, op1, Rt, CRm) __ASM volatile("MRRC p" # cp ", " # op1 ", %Q0, %R0, c" # CRm : "=r" (Rt) : : "memory" )
#define __set_CP64(cp, op1, Rt, CRm) __ASM volatile("MCRR p" # cp ", " # op1 ", %Q0, %R0, c" # CRm : : "r" (Rt) : "memory" )
#include "cmsis_cp15.h"
/** \brief Enable Floating Point Unit
Critical section, called from undef handler, so systick is disabled
*/
__STATIC_INLINE void __FPU_Enable(void)
{
__ASM volatile(
//Permit access to VFP/NEON, registers by modifying CPACR
" MRC p15,0,R1,c1,c0,2 \n"
" ORR R1,R1,#0x00F00000 \n"
" MCR p15,0,R1,c1,c0,2 \n"
//Ensure that subsequent instructions occur in the context of VFP/NEON access permitted
" ISB \n"
//Enable VFP/NEON
" VMRS R1,FPEXC \n"
" ORR R1,R1,#0x40000000 \n"
" VMSR FPEXC,R1 \n"
//Initialise VFP/NEON registers to 0
" MOV R2,#0 \n"
//Initialise D16 registers to 0
" VMOV D0, R2,R2 \n"
" VMOV D1, R2,R2 \n"
" VMOV D2, R2,R2 \n"
" VMOV D3, R2,R2 \n"
" VMOV D4, R2,R2 \n"
" VMOV D5, R2,R2 \n"
" VMOV D6, R2,R2 \n"
" VMOV D7, R2,R2 \n"
" VMOV D8, R2,R2 \n"
" VMOV D9, R2,R2 \n"
" VMOV D10,R2,R2 \n"
" VMOV D11,R2,R2 \n"
" VMOV D12,R2,R2 \n"
" VMOV D13,R2,R2 \n"
" VMOV D14,R2,R2 \n"
" VMOV D15,R2,R2 \n"
#if (defined(__ARM_NEON) && (__ARM_NEON == 1))
//Initialise D32 registers to 0
" VMOV D16,R2,R2 \n"
" VMOV D17,R2,R2 \n"
" VMOV D18,R2,R2 \n"
" VMOV D19,R2,R2 \n"
" VMOV D20,R2,R2 \n"
" VMOV D21,R2,R2 \n"
" VMOV D22,R2,R2 \n"
" VMOV D23,R2,R2 \n"
" VMOV D24,R2,R2 \n"
" VMOV D25,R2,R2 \n"
" VMOV D26,R2,R2 \n"
" VMOV D27,R2,R2 \n"
" VMOV D28,R2,R2 \n"
" VMOV D29,R2,R2 \n"
" VMOV D30,R2,R2 \n"
" VMOV D31,R2,R2 \n"
#endif
//Initialise FPSCR to a known state
" VMRS R1,FPSCR \n"
" LDR R2,=0x00086060 \n" //Mask off all bits that do not have to be preserved. Non-preserved bits can/should be zero.
" AND R1,R1,R2 \n"
" VMSR FPSCR,R1 "
: : : "cc", "r1", "r2"
);
}
#pragma GCC diagnostic pop
#endif /* __CMSIS_GCC_H */

View File

@ -0,0 +1,573 @@
/**************************************************************************//**
* @file cmsis_iccarm.h
* @brief CMSIS compiler ICCARM (IAR Compiler for Arm) header file
* @version V5.0.7
* @date 15. May 2019
******************************************************************************/
//------------------------------------------------------------------------------
//
// Copyright (c) 2017-2018 IAR Systems
// Copyright (c) 2018-2019 Arm Limited
//
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License")
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//------------------------------------------------------------------------------
#ifndef __CMSIS_ICCARM_H__
#define __CMSIS_ICCARM_H__
#ifndef __ICCARM__
#error This file should only be compiled by ICCARM
#endif
#pragma system_include
#define __IAR_FT _Pragma("inline=forced") __intrinsic
#if (__VER__ >= 8000000)
#define __ICCARM_V8 1
#else
#define __ICCARM_V8 0
#endif
#pragma language=extended
#ifndef __ALIGNED
#if __ICCARM_V8
#define __ALIGNED(x) __attribute__((aligned(x)))
#elif (__VER__ >= 7080000)
/* Needs IAR language extensions */
#define __ALIGNED(x) __attribute__((aligned(x)))
#else
#warning No compiler specific solution for __ALIGNED.__ALIGNED is ignored.
#define __ALIGNED(x)
#endif
#endif
/* Define compiler macros for CPU architecture, used in CMSIS 5.
*/
#if __ARM_ARCH_7A__
/* Macro already defined */
#else
#if defined(__ARM7A__)
#define __ARM_ARCH_7A__ 1
#endif
#endif
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __COMPILER_BARRIER
#define __COMPILER_BARRIER() __ASM volatile("":::"memory")
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __NO_RETURN
#if __ICCARM_V8
#define __NO_RETURN __attribute__((__noreturn__))
#else
#define __NO_RETURN _Pragma("object_attribute=__noreturn")
#endif
#endif
#ifndef __PACKED
/* Needs IAR language extensions */
#if __ICCARM_V8
#define __PACKED __attribute__((packed, aligned(1)))
#else
#define __PACKED __packed
#endif
#endif
#ifndef __PACKED_STRUCT
/* Needs IAR language extensions */
#if __ICCARM_V8
#define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
#else
#define __PACKED_STRUCT __packed struct
#endif
#endif
#ifndef __PACKED_UNION
/* Needs IAR language extensions */
#if __ICCARM_V8
#define __PACKED_UNION union __attribute__((packed, aligned(1)))
#else
#define __PACKED_UNION __packed union
#endif
#endif
#ifndef __RESTRICT
#if __ICCARM_V8
#define __RESTRICT __restrict
#else
/* Needs IAR language extensions */
#define __RESTRICT restrict
#endif
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __FORCEINLINE
#define __FORCEINLINE _Pragma("inline=forced")
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __FORCEINLINE __STATIC_INLINE
#endif
#ifndef CMSIS_DEPRECATED
#define CMSIS_DEPRECATED __attribute__((deprecated))
#endif
#ifndef __UNALIGNED_UINT16_READ
#pragma language=save
#pragma language=extended
__IAR_FT uint16_t __iar_uint16_read(void const *ptr)
{
return *(__packed uint16_t*)(ptr);
}
#pragma language=restore
#define __UNALIGNED_UINT16_READ(PTR) __iar_uint16_read(PTR)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
#pragma language=save
#pragma language=extended
__IAR_FT void __iar_uint16_write(void const *ptr, uint16_t val)
{
*(__packed uint16_t*)(ptr) = val;;
}
#pragma language=restore
#define __UNALIGNED_UINT16_WRITE(PTR,VAL) __iar_uint16_write(PTR,VAL)
#endif
#ifndef __UNALIGNED_UINT32_READ
#pragma language=save
#pragma language=extended
__IAR_FT uint32_t __iar_uint32_read(void const *ptr)
{
return *(__packed uint32_t*)(ptr);
}
#pragma language=restore
#define __UNALIGNED_UINT32_READ(PTR) __iar_uint32_read(PTR)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
#pragma language=save
#pragma language=extended
__IAR_FT void __iar_uint32_write(void const *ptr, uint32_t val)
{
*(__packed uint32_t*)(ptr) = val;;
}
#pragma language=restore
#define __UNALIGNED_UINT32_WRITE(PTR,VAL) __iar_uint32_write(PTR,VAL)
#endif
#if 0
#ifndef __UNALIGNED_UINT32 /* deprecated */
#pragma language=save
#pragma language=extended
__packed struct __iar_u32 { uint32_t v; };
#pragma language=restore
#define __UNALIGNED_UINT32(PTR) (((struct __iar_u32 *)(PTR))->v)
#endif
#endif
#ifndef __USED
#if __ICCARM_V8
#define __USED __attribute__((used))
#else
#define __USED _Pragma("__root")
#endif
#endif
#ifndef __WEAK
#if __ICCARM_V8
#define __WEAK __attribute__((weak))
#else
#define __WEAK _Pragma("__weak")
#endif
#endif
#ifndef __ICCARM_INTRINSICS_VERSION__
#define __ICCARM_INTRINSICS_VERSION__ 0
#endif
#if __ICCARM_INTRINSICS_VERSION__ == 2
#if defined(__CLZ)
#undef __CLZ
#endif
#if defined(__REVSH)
#undef __REVSH
#endif
#if defined(__RBIT)
#undef __RBIT
#endif
#if defined(__SSAT)
#undef __SSAT
#endif
#if defined(__USAT)
#undef __USAT
#endif
#include "iccarm_builtin.h"
#define __enable_irq __iar_builtin_enable_interrupt
#define __disable_irq __iar_builtin_disable_interrupt
#define __enable_fault_irq __iar_builtin_enable_fiq
#define __disable_fault_irq __iar_builtin_disable_fiq
#define __arm_rsr __iar_builtin_rsr
#define __arm_wsr __iar_builtin_wsr
#if __FPU_PRESENT
#define __get_FPSCR() (__arm_rsr("FPSCR"))
#else
#define __get_FPSCR() ( 0 )
#endif
#define __set_FPSCR(VALUE) (__arm_wsr("FPSCR", VALUE))
#define __get_CPSR() (__arm_rsr("CPSR"))
#define __get_mode() (__get_CPSR() & 0x1FU)
#define __set_CPSR(VALUE) (__arm_wsr("CPSR", (VALUE)))
#define __set_mode(VALUE) (__arm_wsr("CPSR_c", (VALUE)))
#define __get_FPEXC() (__arm_rsr("FPEXC"))
#define __set_FPEXC(VALUE) (__arm_wsr("FPEXC", VALUE))
#define __get_CP(cp, op1, RT, CRn, CRm, op2) \
((RT) = __arm_rsr("p" # cp ":" # op1 ":c" # CRn ":c" # CRm ":" # op2))
#define __set_CP(cp, op1, RT, CRn, CRm, op2) \
(__arm_wsr("p" # cp ":" # op1 ":c" # CRn ":c" # CRm ":" # op2, (RT)))
#define __get_CP64(cp, op1, Rt, CRm) \
__ASM volatile("MRRC p" # cp ", " # op1 ", %Q0, %R0, c" # CRm : "=r" (Rt) : : "memory" )
#define __set_CP64(cp, op1, Rt, CRm) \
__ASM volatile("MCRR p" # cp ", " # op1 ", %Q0, %R0, c" # CRm : : "r" (Rt) : "memory" )
#include "cmsis_cp15.h"
#define __NOP __iar_builtin_no_operation
#define __CLZ __iar_builtin_CLZ
#define __CLREX __iar_builtin_CLREX
#define __DMB __iar_builtin_DMB
#define __DSB __iar_builtin_DSB
#define __ISB __iar_builtin_ISB
#define __LDREXB __iar_builtin_LDREXB
#define __LDREXH __iar_builtin_LDREXH
#define __LDREXW __iar_builtin_LDREX
#define __RBIT __iar_builtin_RBIT
#define __REV __iar_builtin_REV
#define __REV16 __iar_builtin_REV16
__IAR_FT int16_t __REVSH(int16_t val)
{
return (int16_t) __iar_builtin_REVSH(val);
}
#define __ROR __iar_builtin_ROR
#define __RRX __iar_builtin_RRX
#define __SEV __iar_builtin_SEV
#define __SSAT __iar_builtin_SSAT
#define __STREXB __iar_builtin_STREXB
#define __STREXH __iar_builtin_STREXH
#define __STREXW __iar_builtin_STREX
#define __USAT __iar_builtin_USAT
#define __WFE __iar_builtin_WFE
#define __WFI __iar_builtin_WFI
#define __SADD8 __iar_builtin_SADD8
#define __QADD8 __iar_builtin_QADD8
#define __SHADD8 __iar_builtin_SHADD8
#define __UADD8 __iar_builtin_UADD8
#define __UQADD8 __iar_builtin_UQADD8
#define __UHADD8 __iar_builtin_UHADD8
#define __SSUB8 __iar_builtin_SSUB8
#define __QSUB8 __iar_builtin_QSUB8
#define __SHSUB8 __iar_builtin_SHSUB8
#define __USUB8 __iar_builtin_USUB8
#define __UQSUB8 __iar_builtin_UQSUB8
#define __UHSUB8 __iar_builtin_UHSUB8
#define __SADD16 __iar_builtin_SADD16
#define __QADD16 __iar_builtin_QADD16
#define __SHADD16 __iar_builtin_SHADD16
#define __UADD16 __iar_builtin_UADD16
#define __UQADD16 __iar_builtin_UQADD16
#define __UHADD16 __iar_builtin_UHADD16
#define __SSUB16 __iar_builtin_SSUB16
#define __QSUB16 __iar_builtin_QSUB16
#define __SHSUB16 __iar_builtin_SHSUB16
#define __USUB16 __iar_builtin_USUB16
#define __UQSUB16 __iar_builtin_UQSUB16
#define __UHSUB16 __iar_builtin_UHSUB16
#define __SASX __iar_builtin_SASX
#define __QASX __iar_builtin_QASX
#define __SHASX __iar_builtin_SHASX
#define __UASX __iar_builtin_UASX
#define __UQASX __iar_builtin_UQASX
#define __UHASX __iar_builtin_UHASX
#define __SSAX __iar_builtin_SSAX
#define __QSAX __iar_builtin_QSAX
#define __SHSAX __iar_builtin_SHSAX
#define __USAX __iar_builtin_USAX
#define __UQSAX __iar_builtin_UQSAX
#define __UHSAX __iar_builtin_UHSAX
#define __USAD8 __iar_builtin_USAD8
#define __USADA8 __iar_builtin_USADA8
#define __SSAT16 __iar_builtin_SSAT16
#define __USAT16 __iar_builtin_USAT16
#define __UXTB16 __iar_builtin_UXTB16
#define __UXTAB16 __iar_builtin_UXTAB16
#define __SXTB16 __iar_builtin_SXTB16
#define __SXTAB16 __iar_builtin_SXTAB16
#define __SMUAD __iar_builtin_SMUAD
#define __SMUADX __iar_builtin_SMUADX
#define __SMMLA __iar_builtin_SMMLA
#define __SMLAD __iar_builtin_SMLAD
#define __SMLADX __iar_builtin_SMLADX
#define __SMLALD __iar_builtin_SMLALD
#define __SMLALDX __iar_builtin_SMLALDX
#define __SMUSD __iar_builtin_SMUSD
#define __SMUSDX __iar_builtin_SMUSDX
#define __SMLSD __iar_builtin_SMLSD
#define __SMLSDX __iar_builtin_SMLSDX
#define __SMLSLD __iar_builtin_SMLSLD
#define __SMLSLDX __iar_builtin_SMLSLDX
#define __SEL __iar_builtin_SEL
#define __QADD __iar_builtin_QADD
#define __QSUB __iar_builtin_QSUB
#define __PKHBT __iar_builtin_PKHBT
#define __PKHTB __iar_builtin_PKHTB
#else /* __ICCARM_INTRINSICS_VERSION__ == 2 */
#if !__FPU_PRESENT
#define __get_FPSCR __cmsis_iar_get_FPSR_not_active
#endif
#ifdef __INTRINSICS_INCLUDED
#error intrinsics.h is already included previously!
#endif
#include <intrinsics.h>
#if !__FPU_PRESENT
#define __get_FPSCR() (0)
#endif
#pragma diag_suppress=Pe940
#pragma diag_suppress=Pe177
#define __enable_irq __enable_interrupt
#define __disable_irq __disable_interrupt
#define __enable_fault_irq __enable_fiq
#define __disable_fault_irq __disable_fiq
#define __NOP __no_operation
#define __get_xPSR __get_PSR
__IAR_FT void __set_mode(uint32_t mode)
{
__ASM volatile("MSR cpsr_c, %0" : : "r" (mode) : "memory");
}
__IAR_FT uint32_t __LDREXW(uint32_t volatile *ptr)
{
return __LDREX((unsigned long *)ptr);
}
__IAR_FT uint32_t __STREXW(uint32_t value, uint32_t volatile *ptr)
{
return __STREX(value, (unsigned long *)ptr);
}
__IAR_FT uint32_t __RRX(uint32_t value)
{
uint32_t result;
__ASM("RRX %0, %1" : "=r"(result) : "r" (value) : "cc");
return(result);
}
__IAR_FT uint32_t __ROR(uint32_t op1, uint32_t op2)
{
return (op1 >> op2) | (op1 << ((sizeof(op1)*8)-op2));
}
__IAR_FT uint32_t __get_FPEXC(void)
{
#if (__FPU_PRESENT == 1)
uint32_t result;
__ASM volatile("VMRS %0, fpexc" : "=r" (result) : : "memory");
return(result);
#else
return(0);
#endif
}
__IAR_FT void __set_FPEXC(uint32_t fpexc)
{
#if (__FPU_PRESENT == 1)
__ASM volatile ("VMSR fpexc, %0" : : "r" (fpexc) : "memory");
#endif
}
#define __get_CP(cp, op1, Rt, CRn, CRm, op2) \
__ASM volatile("MRC p" # cp ", " # op1 ", %0, c" # CRn ", c" # CRm ", " # op2 : "=r" (Rt) : : "memory" )
#define __set_CP(cp, op1, Rt, CRn, CRm, op2) \
__ASM volatile("MCR p" # cp ", " # op1 ", %0, c" # CRn ", c" # CRm ", " # op2 : : "r" (Rt) : "memory" )
#define __get_CP64(cp, op1, Rt, CRm) \
__ASM volatile("MRRC p" # cp ", " # op1 ", %Q0, %R0, c" # CRm : "=r" (Rt) : : "memory" )
#define __set_CP64(cp, op1, Rt, CRm) \
__ASM volatile("MCRR p" # cp ", " # op1 ", %Q0, %R0, c" # CRm : : "r" (Rt) : "memory" )
#include "cmsis_cp15.h"
#endif /* __ICCARM_INTRINSICS_VERSION__ == 2 */
#define __BKPT(value) __asm volatile ("BKPT %0" : : "i"(value))
__IAR_FT uint32_t __get_SP_usr(void)
{
uint32_t cpsr;
uint32_t result;
__ASM volatile(
"MRS %0, cpsr \n"
"CPS #0x1F \n" // no effect in USR mode
"MOV %1, sp \n"
"MSR cpsr_c, %2 \n" // no effect in USR mode
"ISB" : "=r"(cpsr), "=r"(result) : "r"(cpsr) : "memory"
);
return result;
}
__IAR_FT void __set_SP_usr(uint32_t topOfProcStack)
{
uint32_t cpsr;
__ASM volatile(
"MRS %0, cpsr \n"
"CPS #0x1F \n" // no effect in USR mode
"MOV sp, %1 \n"
"MSR cpsr_c, %2 \n" // no effect in USR mode
"ISB" : "=r"(cpsr) : "r" (topOfProcStack), "r"(cpsr) : "memory"
);
}
#define __get_mode() (__get_CPSR() & 0x1FU)
__STATIC_INLINE
void __FPU_Enable(void)
{
__ASM volatile(
//Permit access to VFP/NEON, registers by modifying CPACR
" MRC p15,0,R1,c1,c0,2 \n"
" ORR R1,R1,#0x00F00000 \n"
" MCR p15,0,R1,c1,c0,2 \n"
//Ensure that subsequent instructions occur in the context of VFP/NEON access permitted
" ISB \n"
//Enable VFP/NEON
" VMRS R1,FPEXC \n"
" ORR R1,R1,#0x40000000 \n"
" VMSR FPEXC,R1 \n"
//Initialise VFP/NEON registers to 0
" MOV R2,#0 \n"
//Initialise D16 registers to 0
" VMOV D0, R2,R2 \n"
" VMOV D1, R2,R2 \n"
" VMOV D2, R2,R2 \n"
" VMOV D3, R2,R2 \n"
" VMOV D4, R2,R2 \n"
" VMOV D5, R2,R2 \n"
" VMOV D6, R2,R2 \n"
" VMOV D7, R2,R2 \n"
" VMOV D8, R2,R2 \n"
" VMOV D9, R2,R2 \n"
" VMOV D10,R2,R2 \n"
" VMOV D11,R2,R2 \n"
" VMOV D12,R2,R2 \n"
" VMOV D13,R2,R2 \n"
" VMOV D14,R2,R2 \n"
" VMOV D15,R2,R2 \n"
#ifdef __ARM_ADVANCED_SIMD__
//Initialise D32 registers to 0
" VMOV D16,R2,R2 \n"
" VMOV D17,R2,R2 \n"
" VMOV D18,R2,R2 \n"
" VMOV D19,R2,R2 \n"
" VMOV D20,R2,R2 \n"
" VMOV D21,R2,R2 \n"
" VMOV D22,R2,R2 \n"
" VMOV D23,R2,R2 \n"
" VMOV D24,R2,R2 \n"
" VMOV D25,R2,R2 \n"
" VMOV D26,R2,R2 \n"
" VMOV D27,R2,R2 \n"
" VMOV D28,R2,R2 \n"
" VMOV D29,R2,R2 \n"
" VMOV D30,R2,R2 \n"
" VMOV D31,R2,R2 \n"
#endif
//Initialise FPSCR to a known state
" VMRS R1,FPSCR \n"
" MOV32 R2,#0x00086060 \n" //Mask off all bits that do not have to be preserved. Non-preserved bits can/should be zero.
" AND R1,R1,R2 \n"
" VMSR FPSCR,R1 \n"
: : : "cc", "r1", "r2"
);
}
#undef __IAR_FT
#undef __ICCARM_V8
#pragma diag_default=Pe940
#pragma diag_default=Pe177
#endif /* __CMSIS_ICCARM_H__ */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,192 @@
/**************************************************************************//**
* @file irq_ctrl.h
* @brief Interrupt Controller API header file
* @version V1.1.0
* @date 03. March 2020
******************************************************************************/
/*
* Copyright (c) 2017-2020 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef IRQ_CTRL_H_
#define IRQ_CTRL_H_
#include <stdint.h>
#ifndef IRQHANDLER_T
#define IRQHANDLER_T
/// Interrupt handler data type
typedef void (*IRQHandler_t) (void);
#endif
#ifndef IRQN_ID_T
#define IRQN_ID_T
/// Interrupt ID number data type
typedef int32_t IRQn_ID_t;
#endif
/* Interrupt mode bit-masks */
#define IRQ_MODE_TRIG_Pos (0U)
#define IRQ_MODE_TRIG_Msk (0x07UL /*<< IRQ_MODE_TRIG_Pos*/)
#define IRQ_MODE_TRIG_LEVEL (0x00UL /*<< IRQ_MODE_TRIG_Pos*/) ///< Trigger: level triggered interrupt
#define IRQ_MODE_TRIG_LEVEL_LOW (0x01UL /*<< IRQ_MODE_TRIG_Pos*/) ///< Trigger: low level triggered interrupt
#define IRQ_MODE_TRIG_LEVEL_HIGH (0x02UL /*<< IRQ_MODE_TRIG_Pos*/) ///< Trigger: high level triggered interrupt
#define IRQ_MODE_TRIG_EDGE (0x04UL /*<< IRQ_MODE_TRIG_Pos*/) ///< Trigger: edge triggered interrupt
#define IRQ_MODE_TRIG_EDGE_RISING (0x05UL /*<< IRQ_MODE_TRIG_Pos*/) ///< Trigger: rising edge triggered interrupt
#define IRQ_MODE_TRIG_EDGE_FALLING (0x06UL /*<< IRQ_MODE_TRIG_Pos*/) ///< Trigger: falling edge triggered interrupt
#define IRQ_MODE_TRIG_EDGE_BOTH (0x07UL /*<< IRQ_MODE_TRIG_Pos*/) ///< Trigger: rising and falling edge triggered interrupt
#define IRQ_MODE_TYPE_Pos (3U)
#define IRQ_MODE_TYPE_Msk (0x01UL << IRQ_MODE_TYPE_Pos)
#define IRQ_MODE_TYPE_IRQ (0x00UL << IRQ_MODE_TYPE_Pos) ///< Type: interrupt source triggers CPU IRQ line
#define IRQ_MODE_TYPE_FIQ (0x01UL << IRQ_MODE_TYPE_Pos) ///< Type: interrupt source triggers CPU FIQ line
#define IRQ_MODE_DOMAIN_Pos (4U)
#define IRQ_MODE_DOMAIN_Msk (0x01UL << IRQ_MODE_DOMAIN_Pos)
#define IRQ_MODE_DOMAIN_NONSECURE (0x00UL << IRQ_MODE_DOMAIN_Pos) ///< Domain: interrupt is targeting non-secure domain
#define IRQ_MODE_DOMAIN_SECURE (0x01UL << IRQ_MODE_DOMAIN_Pos) ///< Domain: interrupt is targeting secure domain
#define IRQ_MODE_CPU_Pos (5U)
#define IRQ_MODE_CPU_Msk (0xFFUL << IRQ_MODE_CPU_Pos)
#define IRQ_MODE_CPU_ALL (0x00UL << IRQ_MODE_CPU_Pos) ///< CPU: interrupt targets all CPUs
#define IRQ_MODE_CPU_0 (0x01UL << IRQ_MODE_CPU_Pos) ///< CPU: interrupt targets CPU 0
#define IRQ_MODE_CPU_1 (0x02UL << IRQ_MODE_CPU_Pos) ///< CPU: interrupt targets CPU 1
#define IRQ_MODE_CPU_2 (0x04UL << IRQ_MODE_CPU_Pos) ///< CPU: interrupt targets CPU 2
#define IRQ_MODE_CPU_3 (0x08UL << IRQ_MODE_CPU_Pos) ///< CPU: interrupt targets CPU 3
#define IRQ_MODE_CPU_4 (0x10UL << IRQ_MODE_CPU_Pos) ///< CPU: interrupt targets CPU 4
#define IRQ_MODE_CPU_5 (0x20UL << IRQ_MODE_CPU_Pos) ///< CPU: interrupt targets CPU 5
#define IRQ_MODE_CPU_6 (0x40UL << IRQ_MODE_CPU_Pos) ///< CPU: interrupt targets CPU 6
#define IRQ_MODE_CPU_7 (0x80UL << IRQ_MODE_CPU_Pos) ///< CPU: interrupt targets CPU 7
// Encoding in some early GIC implementations
#define IRQ_MODE_MODEL_Pos (13U)
#define IRQ_MODE_MODEL_Msk (0x1UL << IRQ_MODE_MODEL_Pos)
#define IRQ_MODE_MODEL_NN (0x0UL << IRQ_MODE_MODEL_Pos) ///< Corresponding interrupt is handled using the N-N model
#define IRQ_MODE_MODEL_1N (0x1UL << IRQ_MODE_MODEL_Pos) ///< Corresponding interrupt is handled using the 1-N model
#define IRQ_MODE_ERROR (0x80000000UL) ///< Bit indicating mode value error
/* Interrupt priority bit-masks */
#define IRQ_PRIORITY_Msk (0x0000FFFFUL) ///< Interrupt priority value bit-mask
#define IRQ_PRIORITY_ERROR (0x80000000UL) ///< Bit indicating priority value error
/// Initialize interrupt controller.
/// \return 0 on success, -1 on error.
int32_t IRQ_Initialize (void);
/// Register interrupt handler.
/// \param[in] irqn interrupt ID number
/// \param[in] handler interrupt handler function address
/// \return 0 on success, -1 on error.
int32_t IRQ_SetHandler (IRQn_ID_t irqn, IRQHandler_t handler);
/// Get the registered interrupt handler.
/// \param[in] irqn interrupt ID number
/// \return registered interrupt handler function address.
IRQHandler_t IRQ_GetHandler (IRQn_ID_t irqn);
/// Enable interrupt.
/// \param[in] irqn interrupt ID number
/// \return 0 on success, -1 on error.
int32_t IRQ_Enable (IRQn_ID_t irqn);
/// Disable interrupt.
/// \param[in] irqn interrupt ID number
/// \return 0 on success, -1 on error.
int32_t IRQ_Disable (IRQn_ID_t irqn);
/// Get interrupt enable state.
/// \param[in] irqn interrupt ID number
/// \return 0 - interrupt is disabled, 1 - interrupt is enabled.
uint32_t IRQ_GetEnableState (IRQn_ID_t irqn);
/// Configure interrupt request mode.
/// \param[in] irqn interrupt ID number
/// \param[in] mode mode configuration
/// \return 0 on success, -1 on error.
int32_t IRQ_SetMode (IRQn_ID_t irqn, uint32_t mode);
/// Get interrupt mode configuration.
/// \param[in] irqn interrupt ID number
/// \return current interrupt mode configuration with optional IRQ_MODE_ERROR bit set.
uint32_t IRQ_GetMode (IRQn_ID_t irqn);
/// Get ID number of current interrupt request (IRQ).
/// \return interrupt ID number.
IRQn_ID_t IRQ_GetActiveIRQ (void);
/// Get ID number of current fast interrupt request (FIQ).
/// \return interrupt ID number.
IRQn_ID_t IRQ_GetActiveFIQ (void);
/// Signal end of interrupt processing.
/// \param[in] irqn interrupt ID number
/// \return 0 on success, -1 on error.
int32_t IRQ_EndOfInterrupt (IRQn_ID_t irqn);
/// Set interrupt pending flag.
/// \param[in] irqn interrupt ID number
/// \return 0 on success, -1 on error.
int32_t IRQ_SetPending (IRQn_ID_t irqn);
/// Get interrupt pending flag.
/// \param[in] irqn interrupt ID number
/// \return 0 - interrupt is not pending, 1 - interrupt is pending.
uint32_t IRQ_GetPending (IRQn_ID_t irqn);
/// Clear interrupt pending flag.
/// \param[in] irqn interrupt ID number
/// \return 0 on success, -1 on error.
int32_t IRQ_ClearPending (IRQn_ID_t irqn);
/// Set interrupt priority value.
/// \param[in] irqn interrupt ID number
/// \param[in] priority interrupt priority value
/// \return 0 on success, -1 on error.
int32_t IRQ_SetPriority (IRQn_ID_t irqn, uint32_t priority);
/// Get interrupt priority.
/// \param[in] irqn interrupt ID number
/// \return current interrupt priority value with optional IRQ_PRIORITY_ERROR bit set.
uint32_t IRQ_GetPriority (IRQn_ID_t irqn);
/// Set priority masking threshold.
/// \param[in] priority priority masking threshold value
/// \return 0 on success, -1 on error.
int32_t IRQ_SetPriorityMask (uint32_t priority);
/// Get priority masking threshold
/// \return current priority masking threshold value with optional IRQ_PRIORITY_ERROR bit set.
uint32_t IRQ_GetPriorityMask (void);
/// Set priority grouping field split point
/// \param[in] bits number of MSB bits included in the group priority field comparison
/// \return 0 on success, -1 on error.
int32_t IRQ_SetPriorityGroupBits (uint32_t bits);
/// Get priority grouping field split point
/// \return current number of MSB bits included in the group priority field comparison with
/// optional IRQ_PRIORITY_ERROR bit set.
uint32_t IRQ_GetPriorityGroupBits (void);
#endif // IRQ_CTRL_H_

View File

@ -0,0 +1,418 @@
/**************************************************************************//**
* @file irq_ctrl_gic.c
* @brief Interrupt controller handling implementation for GIC
* @version V1.1.1
* @date 29. March 2021
******************************************************************************/
/*
* Copyright (c) 2017-2021 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stddef.h>
#include "RTE_Components.h"
#include CMSIS_device_header
#include "irq_ctrl.h"
#if defined(__GIC_PRESENT) && (__GIC_PRESENT == 1U)
/// Number of implemented interrupt lines
#ifndef IRQ_GIC_LINE_COUNT
#define IRQ_GIC_LINE_COUNT (1020U)
#endif
static IRQHandler_t IRQTable[IRQ_GIC_LINE_COUNT] = { 0U };
static uint32_t IRQ_ID0;
/// Initialize interrupt controller.
__WEAK int32_t IRQ_Initialize (void) {
uint32_t i;
for (i = 0U; i < IRQ_GIC_LINE_COUNT; i++) {
IRQTable[i] = (IRQHandler_t)NULL;
}
GIC_Enable();
return (0);
}
/// Register interrupt handler.
__WEAK int32_t IRQ_SetHandler (IRQn_ID_t irqn, IRQHandler_t handler) {
int32_t status;
if ((irqn >= 0) && (irqn < (IRQn_ID_t)IRQ_GIC_LINE_COUNT)) {
IRQTable[irqn] = handler;
status = 0;
} else {
status = -1;
}
return (status);
}
/// Get the registered interrupt handler.
__WEAK IRQHandler_t IRQ_GetHandler (IRQn_ID_t irqn) {
IRQHandler_t h;
// Ignore CPUID field (software generated interrupts)
irqn &= 0x3FFU;
if ((irqn >= 0) && (irqn < (IRQn_ID_t)IRQ_GIC_LINE_COUNT)) {
h = IRQTable[irqn];
} else {
h = (IRQHandler_t)0;
}
return (h);
}
/// Enable interrupt.
__WEAK int32_t IRQ_Enable (IRQn_ID_t irqn) {
int32_t status;
if ((irqn >= 0) && (irqn < (IRQn_ID_t)IRQ_GIC_LINE_COUNT)) {
GIC_EnableIRQ ((IRQn_Type)irqn);
status = 0;
} else {
status = -1;
}
return (status);
}
/// Disable interrupt.
__WEAK int32_t IRQ_Disable (IRQn_ID_t irqn) {
int32_t status;
if ((irqn >= 0) && (irqn < (IRQn_ID_t)IRQ_GIC_LINE_COUNT)) {
GIC_DisableIRQ ((IRQn_Type)irqn);
status = 0;
} else {
status = -1;
}
return (status);
}
/// Get interrupt enable state.
__WEAK uint32_t IRQ_GetEnableState (IRQn_ID_t irqn) {
uint32_t enable;
if ((irqn >= 0) && (irqn < (IRQn_ID_t)IRQ_GIC_LINE_COUNT)) {
enable = GIC_GetEnableIRQ((IRQn_Type)irqn);
} else {
enable = 0U;
}
return (enable);
}
/// Configure interrupt request mode.
__WEAK int32_t IRQ_SetMode (IRQn_ID_t irqn, uint32_t mode) {
uint32_t val;
uint8_t cfg;
uint8_t secure;
uint8_t cpu;
int32_t status = 0;
if ((irqn >= 0) && (irqn < (IRQn_ID_t)IRQ_GIC_LINE_COUNT)) {
// Check triggering mode
val = (mode & IRQ_MODE_TRIG_Msk);
if (val == IRQ_MODE_TRIG_LEVEL) {
cfg = 0x00U;
} else if (val == IRQ_MODE_TRIG_EDGE) {
cfg = 0x02U;
} else {
cfg = 0x00U;
status = -1;
}
val = (mode & IRQ_MODE_MODEL_Msk);
if (val == IRQ_MODE_MODEL_1N) {
cfg |= 1; // 1-N model
}
// Check interrupt type
val = mode & IRQ_MODE_TYPE_Msk;
if (val != IRQ_MODE_TYPE_IRQ) {
status = -1;
}
// Check interrupt domain
val = mode & IRQ_MODE_DOMAIN_Msk;
if (val == IRQ_MODE_DOMAIN_NONSECURE) {
secure = 0U;
} else {
// Check security extensions support
val = GIC_DistributorInfo() & (1UL << 10U);
if (val != 0U) {
// Security extensions are supported
secure = 1U;
} else {
secure = 0U;
status = -1;
}
}
// Check interrupt CPU targets
val = mode & IRQ_MODE_CPU_Msk;
if (val == IRQ_MODE_CPU_ALL) {
cpu = 0xFFU;
} else {
cpu = (uint8_t)(val >> IRQ_MODE_CPU_Pos);
}
// Apply configuration if no mode error
if (status == 0) {
GIC_SetConfiguration((IRQn_Type)irqn, cfg);
GIC_SetTarget ((IRQn_Type)irqn, cpu);
if (secure != 0U) {
GIC_SetGroup ((IRQn_Type)irqn, secure);
}
}
}
return (status);
}
/// Get interrupt mode configuration.
__WEAK uint32_t IRQ_GetMode (IRQn_ID_t irqn) {
uint32_t mode;
uint32_t val;
if ((irqn >= 0) && (irqn < (IRQn_ID_t)IRQ_GIC_LINE_COUNT)) {
mode = IRQ_MODE_TYPE_IRQ;
// Get trigger mode
val = GIC_GetConfiguration((IRQn_Type)irqn);
if ((val & 2U) != 0U) {
// Corresponding interrupt is edge triggered
mode |= IRQ_MODE_TRIG_EDGE;
} else {
// Corresponding interrupt is level triggered
mode |= IRQ_MODE_TRIG_LEVEL;
}
if (val & 1U) {
mode |= IRQ_MODE_MODEL_1N;
}
// Get interrupt CPU targets
mode |= GIC_GetTarget ((IRQn_Type)irqn) << IRQ_MODE_CPU_Pos;
} else {
mode = IRQ_MODE_ERROR;
}
return (mode);
}
/// Get ID number of current interrupt request (IRQ).
__WEAK IRQn_ID_t IRQ_GetActiveIRQ (void) {
IRQn_ID_t irqn;
uint32_t prio;
/* Dummy read to avoid GIC 390 errata 801120 */
GIC_GetHighPendingIRQ();
irqn = GIC_AcknowledgePending();
__DSB();
/* Workaround GIC 390 errata 733075 (GIC-390_Errata_Notice_v6.pdf, 09-Jul-2014) */
/* The following workaround code is for a single-core system. It would be */
/* different in a multi-core system. */
/* If the ID is 0 or 0x3FE or 0x3FF, then the GIC CPU interface may be locked-up */
/* so unlock it, otherwise service the interrupt as normal. */
/* Special IDs 1020=0x3FC and 1021=0x3FD are reserved values in GICv1 and GICv2 */
/* so will not occur here. */
if ((irqn == 0) || (irqn >= 0x3FE)) {
/* Unlock the CPU interface with a dummy write to Interrupt Priority Register */
prio = GIC_GetPriority((IRQn_Type)0);
GIC_SetPriority ((IRQn_Type)0, prio);
__DSB();
if ((irqn == 0U) && ((GIC_GetIRQStatus ((IRQn_Type)irqn) & 1U) != 0U) && (IRQ_ID0 == 0U)) {
/* If the ID is 0, is active and has not been seen before */
IRQ_ID0 = 1U;
}
/* End of Workaround GIC 390 errata 733075 */
}
return (irqn);
}
/// Get ID number of current fast interrupt request (FIQ).
__WEAK IRQn_ID_t IRQ_GetActiveFIQ (void) {
return ((IRQn_ID_t)-1);
}
/// Signal end of interrupt processing.
__WEAK int32_t IRQ_EndOfInterrupt (IRQn_ID_t irqn) {
int32_t status;
IRQn_Type irq = (IRQn_Type)irqn;
irqn &= 0x3FFU;
if ((irqn >= 0) && (irqn < (IRQn_ID_t)IRQ_GIC_LINE_COUNT)) {
GIC_EndInterrupt (irq);
if (irqn == 0) {
IRQ_ID0 = 0U;
}
status = 0;
} else {
status = -1;
}
return (status);
}
/// Set interrupt pending flag.
__WEAK int32_t IRQ_SetPending (IRQn_ID_t irqn) {
int32_t status;
if ((irqn >= 0) && (irqn < (IRQn_ID_t)IRQ_GIC_LINE_COUNT)) {
GIC_SetPendingIRQ ((IRQn_Type)irqn);
status = 0;
} else {
status = -1;
}
return (status);
}
/// Get interrupt pending flag.
__WEAK uint32_t IRQ_GetPending (IRQn_ID_t irqn) {
uint32_t pending;
if ((irqn >= 16) && (irqn < (IRQn_ID_t)IRQ_GIC_LINE_COUNT)) {
pending = GIC_GetPendingIRQ ((IRQn_Type)irqn);
} else {
pending = 0U;
}
return (pending & 1U);
}
/// Clear interrupt pending flag.
__WEAK int32_t IRQ_ClearPending (IRQn_ID_t irqn) {
int32_t status;
if ((irqn >= 16) && (irqn < (IRQn_ID_t)IRQ_GIC_LINE_COUNT)) {
GIC_ClearPendingIRQ ((IRQn_Type)irqn);
status = 0;
} else {
status = -1;
}
return (status);
}
/// Set interrupt priority value.
__WEAK int32_t IRQ_SetPriority (IRQn_ID_t irqn, uint32_t priority) {
int32_t status;
if ((irqn >= 0) && (irqn < (IRQn_ID_t)IRQ_GIC_LINE_COUNT)) {
GIC_SetPriority ((IRQn_Type)irqn, priority);
status = 0;
} else {
status = -1;
}
return (status);
}
/// Get interrupt priority.
__WEAK uint32_t IRQ_GetPriority (IRQn_ID_t irqn) {
uint32_t priority;
if ((irqn >= 0) && (irqn < (IRQn_ID_t)IRQ_GIC_LINE_COUNT)) {
priority = GIC_GetPriority ((IRQn_Type)irqn);
} else {
priority = IRQ_PRIORITY_ERROR;
}
return (priority);
}
/// Set priority masking threshold.
__WEAK int32_t IRQ_SetPriorityMask (uint32_t priority) {
GIC_SetInterfacePriorityMask (priority);
return (0);
}
/// Get priority masking threshold
__WEAK uint32_t IRQ_GetPriorityMask (void) {
return GIC_GetInterfacePriorityMask();
}
/// Set priority grouping field split point
__WEAK int32_t IRQ_SetPriorityGroupBits (uint32_t bits) {
int32_t status;
if (bits == IRQ_PRIORITY_Msk) {
bits = 7U;
}
if (bits < 8U) {
GIC_SetBinaryPoint (7U - bits);
status = 0;
} else {
status = -1;
}
return (status);
}
/// Get priority grouping field split point
__WEAK uint32_t IRQ_GetPriorityGroupBits (void) {
uint32_t bp;
bp = GIC_GetBinaryPoint() & 0x07U;
return (7U - bp);
}
#endif

View File

@ -0,0 +1,561 @@
/*
* Copyright (c) 2013-2021 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 16. June 2021
* $Revision: V2.1.0
*
* Project: CMSIS-DAP Configuration
* Title: DAP_config.h CMSIS-DAP Configuration File (Template)
*
*---------------------------------------------------------------------------*/
#ifndef __DAP_CONFIG_H__
#define __DAP_CONFIG_H__
//**************************************************************************************************
/**
\defgroup DAP_Config_Debug_gr CMSIS-DAP Debug Unit Information
\ingroup DAP_ConfigIO_gr
@{
Provides definitions about the hardware and configuration of the Debug Unit.
This information includes:
- Definition of Cortex-M processor parameters used in CMSIS-DAP Debug Unit.
- Debug Unit Identification strings (Vendor, Product, Serial Number).
- Debug Unit communication packet size.
- Debug Access Port supported modes and settings (JTAG/SWD and SWO).
- Optional information about a connected Target Device (for Evaluation Boards).
*/
#ifdef _RTE_
#include "RTE_Components.h"
#include CMSIS_device_header
#else
#include "device.h" // Debug Unit Cortex-M Processor Header File
#endif
/// Processor Clock of the Cortex-M MCU used in the Debug Unit.
/// This value is used to calculate the SWD/JTAG clock speed.
#define CPU_CLOCK 100000000U ///< Specifies the CPU Clock in Hz.
/// Number of processor cycles for I/O Port write operations.
/// This value is used to calculate the SWD/JTAG clock speed that is generated with I/O
/// Port write operations in the Debug Unit by a Cortex-M MCU. Most Cortex-M processors
/// require 2 processor cycles for a I/O Port Write operation. If the Debug Unit uses
/// a Cortex-M0+ processor with high-speed peripheral I/O only 1 processor cycle might be
/// required.
#define IO_PORT_WRITE_CYCLES 2U ///< I/O Cycles: 2=default, 1=Cortex-M0+ fast I/0.
/// Indicate that Serial Wire Debug (SWD) communication mode is available at the Debug Access Port.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define DAP_SWD 1 ///< SWD Mode: 1 = available, 0 = not available.
/// Indicate that JTAG communication mode is available at the Debug Port.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define DAP_JTAG 1 ///< JTAG Mode: 1 = available, 0 = not available.
/// Configure maximum number of JTAG devices on the scan chain connected to the Debug Access Port.
/// This setting impacts the RAM requirements of the Debug Unit. Valid range is 1 .. 255.
#define DAP_JTAG_DEV_CNT 8U ///< Maximum number of JTAG devices on scan chain.
/// Default communication mode on the Debug Access Port.
/// Used for the command \ref DAP_Connect when Port Default mode is selected.
#define DAP_DEFAULT_PORT 1U ///< Default JTAG/SWJ Port Mode: 1 = SWD, 2 = JTAG.
/// Default communication speed on the Debug Access Port for SWD and JTAG mode.
/// Used to initialize the default SWD/JTAG clock frequency.
/// The command \ref DAP_SWJ_Clock can be used to overwrite this default setting.
#define DAP_DEFAULT_SWJ_CLOCK 1000000U ///< Default SWD/JTAG clock frequency in Hz.
/// Maximum Package Size for Command and Response data.
/// This configuration settings is used to optimize the communication performance with the
/// debugger and depends on the USB peripheral. Typical vales are 64 for Full-speed USB HID or WinUSB,
/// 1024 for High-speed USB HID and 512 for High-speed USB WinUSB.
#define DAP_PACKET_SIZE 512U ///< Specifies Packet Size in bytes.
/// Maximum Package Buffers for Command and Response data.
/// This configuration settings is used to optimize the communication performance with the
/// debugger and depends on the USB peripheral. For devices with limited RAM or USB buffer the
/// setting can be reduced (valid range is 1 .. 255).
#define DAP_PACKET_COUNT 8U ///< Specifies number of packets buffered.
/// Indicate that UART Serial Wire Output (SWO) trace is available.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define SWO_UART 1 ///< SWO UART: 1 = available, 0 = not available.
/// USART Driver instance number for the UART SWO.
#define SWO_UART_DRIVER 0 ///< USART Driver instance number (Driver_USART#).
/// Maximum SWO UART Baudrate.
#define SWO_UART_MAX_BAUDRATE 10000000U ///< SWO UART Maximum Baudrate in Hz.
/// Indicate that Manchester Serial Wire Output (SWO) trace is available.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define SWO_MANCHESTER 0 ///< SWO Manchester: 1 = available, 0 = not available.
/// SWO Trace Buffer Size.
#define SWO_BUFFER_SIZE 4096U ///< SWO Trace Buffer Size in bytes (must be 2^n).
/// SWO Streaming Trace.
#define SWO_STREAM 0 ///< SWO Streaming Trace: 1 = available, 0 = not available.
/// Clock frequency of the Test Domain Timer. Timer value is returned with \ref TIMESTAMP_GET.
#define TIMESTAMP_CLOCK 100000000U ///< Timestamp clock in Hz (0 = timestamps not supported).
/// Indicate that UART Communication Port is available.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define DAP_UART 1 ///< DAP UART: 1 = available, 0 = not available.
/// USART Driver instance number for the UART Communication Port.
#define DAP_UART_DRIVER 1 ///< USART Driver instance number (Driver_USART#).
/// UART Receive Buffer Size.
#define DAP_UART_RX_BUFFER_SIZE 1024U ///< Uart Receive Buffer Size in bytes (must be 2^n).
/// UART Transmit Buffer Size.
#define DAP_UART_TX_BUFFER_SIZE 1024U ///< Uart Transmit Buffer Size in bytes (must be 2^n).
/// Indicate that UART Communication via USB COM Port is available.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define DAP_UART_USB_COM_PORT 1 ///< USB COM Port: 1 = available, 0 = not available.
/// Debug Unit is connected to fixed Target Device.
/// The Debug Unit may be part of an evaluation board and always connected to a fixed
/// known device. In this case a Device Vendor, Device Name, Board Vendor and Board Name strings
/// are stored and may be used by the debugger or IDE to configure device parameters.
#define TARGET_FIXED 0 ///< Target: 1 = known, 0 = unknown;
#define TARGET_DEVICE_VENDOR "Arm" ///< String indicating the Silicon Vendor
#define TARGET_DEVICE_NAME "Cortex-M" ///< String indicating the Target Device
#define TARGET_BOARD_VENDOR "Arm" ///< String indicating the Board Vendor
#define TARGET_BOARD_NAME "Arm board" ///< String indicating the Board Name
#if TARGET_FIXED != 0
#include <string.h>
static const char TargetDeviceVendor [] = TARGET_DEVICE_VENDOR;
static const char TargetDeviceName [] = TARGET_DEVICE_NAME;
static const char TargetBoardVendor [] = TARGET_BOARD_VENDOR;
static const char TargetBoardName [] = TARGET_BOARD_NAME;
#endif
/** Get Vendor Name string.
\param str Pointer to buffer to store the string (max 60 characters).
\return String length (including terminating NULL character) or 0 (no string).
*/
__STATIC_INLINE uint8_t DAP_GetVendorString (char *str) {
(void)str;
return (0U);
}
/** Get Product Name string.
\param str Pointer to buffer to store the string (max 60 characters).
\return String length (including terminating NULL character) or 0 (no string).
*/
__STATIC_INLINE uint8_t DAP_GetProductString (char *str) {
(void)str;
return (0U);
}
/** Get Serial Number string.
\param str Pointer to buffer to store the string (max 60 characters).
\return String length (including terminating NULL character) or 0 (no string).
*/
__STATIC_INLINE uint8_t DAP_GetSerNumString (char *str) {
(void)str;
return (0U);
}
/** Get Target Device Vendor string.
\param str Pointer to buffer to store the string (max 60 characters).
\return String length (including terminating NULL character) or 0 (no string).
*/
__STATIC_INLINE uint8_t DAP_GetTargetDeviceVendorString (char *str) {
#if TARGET_FIXED != 0
uint8_t len;
strcpy(str, TargetDeviceVendor);
len = (uint8_t)(strlen(TargetDeviceVendor) + 1U);
return (len);
#else
(void)str;
return (0U);
#endif
}
/** Get Target Device Name string.
\param str Pointer to buffer to store the string (max 60 characters).
\return String length (including terminating NULL character) or 0 (no string).
*/
__STATIC_INLINE uint8_t DAP_GetTargetDeviceNameString (char *str) {
#if TARGET_FIXED != 0
uint8_t len;
strcpy(str, TargetDeviceName);
len = (uint8_t)(strlen(TargetDeviceName) + 1U);
return (len);
#else
(void)str;
return (0U);
#endif
}
/** Get Target Board Vendor string.
\param str Pointer to buffer to store the string (max 60 characters).
\return String length (including terminating NULL character) or 0 (no string).
*/
__STATIC_INLINE uint8_t DAP_GetTargetBoardVendorString (char *str) {
#if TARGET_FIXED != 0
uint8_t len;
strcpy(str, TargetBoardVendor);
len = (uint8_t)(strlen(TargetBoardVendor) + 1U);
return (len);
#else
(void)str;
return (0U);
#endif
}
/** Get Target Board Name string.
\param str Pointer to buffer to store the string (max 60 characters).
\return String length (including terminating NULL character) or 0 (no string).
*/
__STATIC_INLINE uint8_t DAP_GetTargetBoardNameString (char *str) {
#if TARGET_FIXED != 0
uint8_t len;
strcpy(str, TargetBoardName);
len = (uint8_t)(strlen(TargetBoardName) + 1U);
return (len);
#else
(void)str;
return (0U);
#endif
}
/** Get Product Firmware Version string.
\param str Pointer to buffer to store the string (max 60 characters).
\return String length (including terminating NULL character) or 0 (no string).
*/
__STATIC_INLINE uint8_t DAP_GetProductFirmwareVersionString (char *str) {
(void)str;
return (0U);
}
///@}
//**************************************************************************************************
/**
\defgroup DAP_Config_PortIO_gr CMSIS-DAP Hardware I/O Pin Access
\ingroup DAP_ConfigIO_gr
@{
Standard I/O Pins of the CMSIS-DAP Hardware Debug Port support standard JTAG mode
and Serial Wire Debug (SWD) mode. In SWD mode only 2 pins are required to implement the debug
interface of a device. The following I/O Pins are provided:
JTAG I/O Pin | SWD I/O Pin | CMSIS-DAP Hardware pin mode
---------------------------- | -------------------- | ---------------------------------------------
TCK: Test Clock | SWCLK: Clock | Output Push/Pull
TMS: Test Mode Select | SWDIO: Data I/O | Output Push/Pull; Input (for receiving data)
TDI: Test Data Input | | Output Push/Pull
TDO: Test Data Output | | Input
nTRST: Test Reset (optional) | | Output Open Drain with pull-up resistor
nRESET: Device Reset | nRESET: Device Reset | Output Open Drain with pull-up resistor
DAP Hardware I/O Pin Access Functions
-------------------------------------
The various I/O Pins are accessed by functions that implement the Read, Write, Set, or Clear to
these I/O Pins.
For the SWDIO I/O Pin there are additional functions that are called in SWD I/O mode only.
This functions are provided to achieve faster I/O that is possible with some advanced GPIO
peripherals that can independently write/read a single I/O pin without affecting any other pins
of the same I/O port. The following SWDIO I/O Pin functions are provided:
- \ref PIN_SWDIO_OUT_ENABLE to enable the output mode from the DAP hardware.
- \ref PIN_SWDIO_OUT_DISABLE to enable the input mode to the DAP hardware.
- \ref PIN_SWDIO_IN to read from the SWDIO I/O pin with utmost possible speed.
- \ref PIN_SWDIO_OUT to write to the SWDIO I/O pin with utmost possible speed.
*/
// Configure DAP I/O pins ------------------------------
/** Setup JTAG I/O pins: TCK, TMS, TDI, TDO, nTRST, and nRESET.
Configures the DAP Hardware I/O pins for JTAG mode:
- TCK, TMS, TDI, nTRST, nRESET to output mode and set to high level.
- TDO to input mode.
*/
__STATIC_INLINE void PORT_JTAG_SETUP (void) {
;
}
/** Setup SWD I/O pins: SWCLK, SWDIO, and nRESET.
Configures the DAP Hardware I/O pins for Serial Wire Debug (SWD) mode:
- SWCLK, SWDIO, nRESET to output mode and set to default high level.
- TDI, nTRST to HighZ mode (pins are unused in SWD mode).
*/
__STATIC_INLINE void PORT_SWD_SETUP (void) {
;
}
/** Disable JTAG/SWD I/O Pins.
Disables the DAP Hardware I/O pins which configures:
- TCK/SWCLK, TMS/SWDIO, TDI, TDO, nTRST, nRESET to High-Z mode.
*/
__STATIC_INLINE void PORT_OFF (void) {
;
}
// SWCLK/TCK I/O pin -------------------------------------
/** SWCLK/TCK I/O pin: Get Input.
\return Current status of the SWCLK/TCK DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWCLK_TCK_IN (void) {
return (0U);
}
/** SWCLK/TCK I/O pin: Set Output to High.
Set the SWCLK/TCK DAP hardware I/O pin to high level.
*/
__STATIC_FORCEINLINE void PIN_SWCLK_TCK_SET (void) {
;
}
/** SWCLK/TCK I/O pin: Set Output to Low.
Set the SWCLK/TCK DAP hardware I/O pin to low level.
*/
__STATIC_FORCEINLINE void PIN_SWCLK_TCK_CLR (void) {
;
}
// SWDIO/TMS Pin I/O --------------------------------------
/** SWDIO/TMS I/O pin: Get Input.
\return Current status of the SWDIO/TMS DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWDIO_TMS_IN (void) {
return (0U);
}
/** SWDIO/TMS I/O pin: Set Output to High.
Set the SWDIO/TMS DAP hardware I/O pin to high level.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_TMS_SET (void) {
;
}
/** SWDIO/TMS I/O pin: Set Output to Low.
Set the SWDIO/TMS DAP hardware I/O pin to low level.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_TMS_CLR (void) {
;
}
/** SWDIO I/O pin: Get Input (used in SWD mode only).
\return Current status of the SWDIO DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWDIO_IN (void) {
return (0U);
}
/** SWDIO I/O pin: Set Output (used in SWD mode only).
\param bit Output value for the SWDIO DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT (uint32_t bit) {
;
}
/** SWDIO I/O pin: Switch to Output mode (used in SWD mode only).
Configure the SWDIO DAP hardware I/O pin to output mode. This function is
called prior \ref PIN_SWDIO_OUT function calls.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT_ENABLE (void) {
;
}
/** SWDIO I/O pin: Switch to Input mode (used in SWD mode only).
Configure the SWDIO DAP hardware I/O pin to input mode. This function is
called prior \ref PIN_SWDIO_IN function calls.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT_DISABLE (void) {
;
}
// TDI Pin I/O ---------------------------------------------
/** TDI I/O pin: Get Input.
\return Current status of the TDI DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_TDI_IN (void) {
return (0U);
}
/** TDI I/O pin: Set Output.
\param bit Output value for the TDI DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE void PIN_TDI_OUT (uint32_t bit) {
;
}
// TDO Pin I/O ---------------------------------------------
/** TDO I/O pin: Get Input.
\return Current status of the TDO DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_TDO_IN (void) {
return (0U);
}
// nTRST Pin I/O -------------------------------------------
/** nTRST I/O pin: Get Input.
\return Current status of the nTRST DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_nTRST_IN (void) {
return (0U);
}
/** nTRST I/O pin: Set Output.
\param bit JTAG TRST Test Reset pin status:
- 0: issue a JTAG TRST Test Reset.
- 1: release JTAG TRST Test Reset.
*/
__STATIC_FORCEINLINE void PIN_nTRST_OUT (uint32_t bit) {
;
}
// nRESET Pin I/O------------------------------------------
/** nRESET I/O pin: Get Input.
\return Current status of the nRESET DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_nRESET_IN (void) {
return (0U);
}
/** nRESET I/O pin: Set Output.
\param bit target device hardware reset pin status:
- 0: issue a device hardware reset.
- 1: release device hardware reset.
*/
__STATIC_FORCEINLINE void PIN_nRESET_OUT (uint32_t bit) {
;
}
///@}
//**************************************************************************************************
/**
\defgroup DAP_Config_LEDs_gr CMSIS-DAP Hardware Status LEDs
\ingroup DAP_ConfigIO_gr
@{
CMSIS-DAP Hardware may provide LEDs that indicate the status of the CMSIS-DAP Debug Unit.
It is recommended to provide the following LEDs for status indication:
- Connect LED: is active when the DAP hardware is connected to a debugger.
- Running LED: is active when the debugger has put the target device into running state.
*/
/** Debug Unit: Set status of Connected LED.
\param bit status of the Connect LED.
- 1: Connect LED ON: debugger is connected to CMSIS-DAP Debug Unit.
- 0: Connect LED OFF: debugger is not connected to CMSIS-DAP Debug Unit.
*/
__STATIC_INLINE void LED_CONNECTED_OUT (uint32_t bit) {}
/** Debug Unit: Set status Target Running LED.
\param bit status of the Target Running LED.
- 1: Target Running LED ON: program execution in target started.
- 0: Target Running LED OFF: program execution in target stopped.
*/
__STATIC_INLINE void LED_RUNNING_OUT (uint32_t bit) {}
///@}
//**************************************************************************************************
/**
\defgroup DAP_Config_Timestamp_gr CMSIS-DAP Timestamp
\ingroup DAP_ConfigIO_gr
@{
Access function for Test Domain Timer.
The value of the Test Domain Timer in the Debug Unit is returned by the function \ref TIMESTAMP_GET. By
default, the DWT timer is used. The frequency of this timer is configured with \ref TIMESTAMP_CLOCK.
*/
/** Get timestamp of Test Domain Timer.
\return Current timestamp value.
*/
__STATIC_INLINE uint32_t TIMESTAMP_GET (void) {
return (DWT->CYCCNT);
}
///@}
//**************************************************************************************************
/**
\defgroup DAP_Config_Initialization_gr CMSIS-DAP Initialization
\ingroup DAP_ConfigIO_gr
@{
CMSIS-DAP Hardware I/O and LED Pins are initialized with the function \ref DAP_SETUP.
*/
/** Setup of the Debug Unit I/O pins and LEDs (called when Debug Unit is initialized).
This function performs the initialization of the CMSIS-DAP Hardware I/O Pins and the
Status LEDs. In detail the operation of Hardware I/O and LED pins are enabled and set:
- I/O clock system enabled.
- all I/O pins: input buffer enabled, output pins are set to HighZ mode.
- for nTRST, nRESET a weak pull-up (if available) is enabled.
- LED output pins are enabled and LEDs are turned off.
*/
__STATIC_INLINE void DAP_SETUP (void) {
;
}
/** Reset Target Device with custom specific I/O pin or command sequence.
This function allows the optional implementation of a device specific reset sequence.
It is called when the command \ref DAP_ResetTarget and is for example required
when a device needs a time-critical unlock sequence that enables the debug port.
\return 0 = no device specific reset sequence is implemented.\n
1 = a device specific reset sequence is implemented.
*/
__STATIC_INLINE uint8_t RESET_TARGET (void) {
return (0U); // change to '1' when a device reset sequence is implemented
}
///@}
#endif /* __DAP_CONFIG_H__ */

View File

@ -0,0 +1,367 @@
/*
* Copyright (c) 2013-2022 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 26. April 2022
* $Revision: V2.1.1
*
* Project: CMSIS-DAP Include
* Title: DAP.h Definitions
*
*---------------------------------------------------------------------------*/
#ifndef __DAP_H__
#define __DAP_H__
// DAP Firmware Version
#ifdef DAP_FW_V1
#define DAP_FW_VER "1.3.0"
#else
#define DAP_FW_VER "2.1.1"
#endif
// DAP Command IDs
#define ID_DAP_Info 0x00U
#define ID_DAP_HostStatus 0x01U
#define ID_DAP_Connect 0x02U
#define ID_DAP_Disconnect 0x03U
#define ID_DAP_TransferConfigure 0x04U
#define ID_DAP_Transfer 0x05U
#define ID_DAP_TransferBlock 0x06U
#define ID_DAP_TransferAbort 0x07U
#define ID_DAP_WriteABORT 0x08U
#define ID_DAP_Delay 0x09U
#define ID_DAP_ResetTarget 0x0AU
#define ID_DAP_SWJ_Pins 0x10U
#define ID_DAP_SWJ_Clock 0x11U
#define ID_DAP_SWJ_Sequence 0x12U
#define ID_DAP_SWD_Configure 0x13U
#define ID_DAP_SWD_Sequence 0x1DU
#define ID_DAP_JTAG_Sequence 0x14U
#define ID_DAP_JTAG_Configure 0x15U
#define ID_DAP_JTAG_IDCODE 0x16U
#define ID_DAP_SWO_Transport 0x17U
#define ID_DAP_SWO_Mode 0x18U
#define ID_DAP_SWO_Baudrate 0x19U
#define ID_DAP_SWO_Control 0x1AU
#define ID_DAP_SWO_Status 0x1BU
#define ID_DAP_SWO_ExtendedStatus 0x1EU
#define ID_DAP_SWO_Data 0x1CU
#define ID_DAP_UART_Transport 0x1FU
#define ID_DAP_UART_Configure 0x20U
#define ID_DAP_UART_Control 0x22U
#define ID_DAP_UART_Status 0x23U
#define ID_DAP_UART_Transfer 0x21U
#define ID_DAP_QueueCommands 0x7EU
#define ID_DAP_ExecuteCommands 0x7FU
// DAP Vendor Command IDs
#define ID_DAP_Vendor0 0x80U
#define ID_DAP_Vendor1 0x81U
#define ID_DAP_Vendor2 0x82U
#define ID_DAP_Vendor3 0x83U
#define ID_DAP_Vendor4 0x84U
#define ID_DAP_Vendor5 0x85U
#define ID_DAP_Vendor6 0x86U
#define ID_DAP_Vendor7 0x87U
#define ID_DAP_Vendor8 0x88U
#define ID_DAP_Vendor9 0x89U
#define ID_DAP_Vendor10 0x8AU
#define ID_DAP_Vendor11 0x8BU
#define ID_DAP_Vendor12 0x8CU
#define ID_DAP_Vendor13 0x8DU
#define ID_DAP_Vendor14 0x8EU
#define ID_DAP_Vendor15 0x8FU
#define ID_DAP_Vendor16 0x90U
#define ID_DAP_Vendor17 0x91U
#define ID_DAP_Vendor18 0x92U
#define ID_DAP_Vendor19 0x93U
#define ID_DAP_Vendor20 0x94U
#define ID_DAP_Vendor21 0x95U
#define ID_DAP_Vendor22 0x96U
#define ID_DAP_Vendor23 0x97U
#define ID_DAP_Vendor24 0x98U
#define ID_DAP_Vendor25 0x99U
#define ID_DAP_Vendor26 0x9AU
#define ID_DAP_Vendor27 0x9BU
#define ID_DAP_Vendor28 0x9CU
#define ID_DAP_Vendor29 0x9DU
#define ID_DAP_Vendor30 0x9EU
#define ID_DAP_Vendor31 0x9FU
#define ID_DAP_Invalid 0xFFU
// DAP Status Code
#define DAP_OK 0U
#define DAP_ERROR 0xFFU
// DAP ID
#define DAP_ID_VENDOR 1U
#define DAP_ID_PRODUCT 2U
#define DAP_ID_SER_NUM 3U
#define DAP_ID_DAP_FW_VER 4U
#define DAP_ID_DEVICE_VENDOR 5U
#define DAP_ID_DEVICE_NAME 6U
#define DAP_ID_BOARD_VENDOR 7U
#define DAP_ID_BOARD_NAME 8U
#define DAP_ID_PRODUCT_FW_VER 9U
#define DAP_ID_CAPABILITIES 0xF0U
#define DAP_ID_TIMESTAMP_CLOCK 0xF1U
#define DAP_ID_UART_RX_BUFFER_SIZE 0xFBU
#define DAP_ID_UART_TX_BUFFER_SIZE 0xFCU
#define DAP_ID_SWO_BUFFER_SIZE 0xFDU
#define DAP_ID_PACKET_COUNT 0xFEU
#define DAP_ID_PACKET_SIZE 0xFFU
// DAP Host Status
#define DAP_DEBUGGER_CONNECTED 0U
#define DAP_TARGET_RUNNING 1U
// DAP Port
#define DAP_PORT_AUTODETECT 0U // Autodetect Port
#define DAP_PORT_DISABLED 0U // Port Disabled (I/O pins in High-Z)
#define DAP_PORT_SWD 1U // SWD Port (SWCLK, SWDIO) + nRESET
#define DAP_PORT_JTAG 2U // JTAG Port (TCK, TMS, TDI, TDO, nTRST) + nRESET
// DAP SWJ Pins
#define DAP_SWJ_SWCLK_TCK 0 // SWCLK/TCK
#define DAP_SWJ_SWDIO_TMS 1 // SWDIO/TMS
#define DAP_SWJ_TDI 2 // TDI
#define DAP_SWJ_TDO 3 // TDO
#define DAP_SWJ_nTRST 5 // nTRST
#define DAP_SWJ_nRESET 7 // nRESET
// DAP Transfer Request
#define DAP_TRANSFER_APnDP (1U<<0)
#define DAP_TRANSFER_RnW (1U<<1)
#define DAP_TRANSFER_A2 (1U<<2)
#define DAP_TRANSFER_A3 (1U<<3)
#define DAP_TRANSFER_MATCH_VALUE (1U<<4)
#define DAP_TRANSFER_MATCH_MASK (1U<<5)
#define DAP_TRANSFER_TIMESTAMP (1U<<7)
// DAP Transfer Response
#define DAP_TRANSFER_OK (1U<<0)
#define DAP_TRANSFER_WAIT (1U<<1)
#define DAP_TRANSFER_FAULT (1U<<2)
#define DAP_TRANSFER_ERROR (1U<<3)
#define DAP_TRANSFER_MISMATCH (1U<<4)
// DAP SWO Trace Mode
#define DAP_SWO_OFF 0U
#define DAP_SWO_UART 1U
#define DAP_SWO_MANCHESTER 2U
// DAP SWO Trace Status
#define DAP_SWO_CAPTURE_ACTIVE (1U<<0)
#define DAP_SWO_CAPTURE_PAUSED (1U<<1)
#define DAP_SWO_STREAM_ERROR (1U<<6)
#define DAP_SWO_BUFFER_OVERRUN (1U<<7)
// DAP UART Transport
#define DAP_UART_TRANSPORT_NONE 0U
#define DAP_UART_TRANSPORT_USB_COM_PORT 1U
#define DAP_UART_TRANSPORT_DAP_COMMAND 2U
// DAP UART Control
#define DAP_UART_CONTROL_RX_ENABLE (1U<<0)
#define DAP_UART_CONTROL_RX_DISABLE (1U<<1)
#define DAP_UART_CONTROL_RX_BUF_FLUSH (1U<<2)
#define DAP_UART_CONTROL_TX_ENABLE (1U<<4)
#define DAP_UART_CONTROL_TX_DISABLE (1U<<5)
#define DAP_UART_CONTROL_TX_BUF_FLUSH (1U<<6)
// DAP UART Status
#define DAP_UART_STATUS_RX_ENABLED (1U<<0)
#define DAP_UART_STATUS_RX_DATA_LOST (1U<<1)
#define DAP_UART_STATUS_FRAMING_ERROR (1U<<2)
#define DAP_UART_STATUS_PARITY_ERROR (1U<<3)
#define DAP_UART_STATUS_TX_ENABLED (1U<<4)
// DAP UART Configure Error
#define DAP_UART_CFG_ERROR_DATA_BITS (1U<<0)
#define DAP_UART_CFG_ERROR_PARITY (1U<<1)
#define DAP_UART_CFG_ERROR_STOP_BITS (1U<<2)
// Debug Port Register Addresses
#define DP_IDCODE 0x00U // IDCODE Register (SW Read only)
#define DP_ABORT 0x00U // Abort Register (SW Write only)
#define DP_CTRL_STAT 0x04U // Control & Status
#define DP_WCR 0x04U // Wire Control Register (SW Only)
#define DP_SELECT 0x08U // Select Register (JTAG R/W & SW W)
#define DP_RESEND 0x08U // Resend (SW Read Only)
#define DP_RDBUFF 0x0CU // Read Buffer (Read Only)
// JTAG IR Codes
#define JTAG_ABORT 0x08U
#define JTAG_DPACC 0x0AU
#define JTAG_APACC 0x0BU
#define JTAG_IDCODE 0x0EU
#define JTAG_BYPASS 0x0FU
// JTAG Sequence Info
#define JTAG_SEQUENCE_TCK 0x3FU // TCK count
#define JTAG_SEQUENCE_TMS 0x40U // TMS value
#define JTAG_SEQUENCE_TDO 0x80U // TDO capture
// SWD Sequence Info
#define SWD_SEQUENCE_CLK 0x3FU // SWCLK count
#define SWD_SEQUENCE_DIN 0x80U // SWDIO capture
#include <stddef.h>
#include <stdint.h>
#include "cmsis_compiler.h"
// DAP Data structure
typedef struct {
uint8_t debug_port; // Debug Port
uint8_t fast_clock; // Fast Clock Flag
uint8_t padding[2];
uint32_t clock_delay; // Clock Delay
uint32_t timestamp; // Last captured Timestamp
struct { // Transfer Configuration
uint8_t idle_cycles; // Idle cycles after transfer
uint8_t padding[3];
uint16_t retry_count; // Number of retries after WAIT response
uint16_t match_retry; // Number of retries if read value does not match
uint32_t match_mask; // Match Mask
} transfer;
#if (DAP_SWD != 0)
struct { // SWD Configuration
uint8_t turnaround; // Turnaround period
uint8_t data_phase; // Always generate Data Phase
} swd_conf;
#endif
#if (DAP_JTAG != 0)
struct { // JTAG Device Chain
uint8_t count; // Number of devices
uint8_t index; // Device index (device at TDO has index 0)
#if (DAP_JTAG_DEV_CNT != 0)
uint8_t ir_length[DAP_JTAG_DEV_CNT]; // IR Length in bits
uint16_t ir_before[DAP_JTAG_DEV_CNT]; // Bits before IR
uint16_t ir_after [DAP_JTAG_DEV_CNT]; // Bits after IR
#endif
} jtag_dev;
#endif
} DAP_Data_t;
extern DAP_Data_t DAP_Data; // DAP Data
extern volatile uint8_t DAP_TransferAbort; // Transfer Abort Flag
#ifdef __cplusplus
extern "C"
{
#endif
// Functions
extern void SWJ_Sequence (uint32_t count, const uint8_t *data);
extern void SWD_Sequence (uint32_t info, const uint8_t *swdo, uint8_t *swdi);
extern void JTAG_Sequence (uint32_t info, const uint8_t *tdi, uint8_t *tdo);
extern void JTAG_IR (uint32_t ir);
extern uint32_t JTAG_ReadIDCode (void);
extern void JTAG_WriteAbort (uint32_t data);
extern uint8_t JTAG_Transfer (uint32_t request, uint32_t *data);
extern uint8_t SWD_Transfer (uint32_t request, uint32_t *data);
extern void Delayms (uint32_t delay);
extern uint32_t SWO_Transport (const uint8_t *request, uint8_t *response);
extern uint32_t SWO_Mode (const uint8_t *request, uint8_t *response);
extern uint32_t SWO_Baudrate (const uint8_t *request, uint8_t *response);
extern uint32_t SWO_Control (const uint8_t *request, uint8_t *response);
extern uint32_t SWO_Status (uint8_t *response);
extern uint32_t SWO_ExtendedStatus (const uint8_t *request, uint8_t *response);
extern uint32_t SWO_Data (const uint8_t *request, uint8_t *response);
extern void SWO_QueueTransfer (uint8_t *buf, uint32_t num);
extern void SWO_AbortTransfer (void);
extern void SWO_TransferComplete (void);
extern uint32_t SWO_Mode_UART (uint32_t enable);
extern uint32_t SWO_Baudrate_UART (uint32_t baudrate);
extern uint32_t SWO_Control_UART (uint32_t active);
extern void SWO_Capture_UART (uint8_t *buf, uint32_t num);
extern uint32_t SWO_GetCount_UART (void);
extern uint32_t SWO_Mode_Manchester (uint32_t enable);
extern uint32_t SWO_Baudrate_Manchester (uint32_t baudrate);
extern uint32_t SWO_Control_Manchester (uint32_t active);
extern void SWO_Capture_Manchester (uint8_t *buf, uint32_t num);
extern uint32_t SWO_GetCount_Manchester (void);
extern uint32_t UART_Transport (const uint8_t *request, uint8_t *response);
extern uint32_t UART_Configure (const uint8_t *request, uint8_t *response);
extern uint32_t UART_Control (const uint8_t *request, uint8_t *response);
extern uint32_t UART_Status (uint8_t *response);
extern uint32_t UART_Transfer (const uint8_t *request, uint8_t *response);
extern uint8_t USB_COM_PORT_Activate (uint32_t cmd);
extern uint32_t DAP_ProcessVendorCommand (const uint8_t *request, uint8_t *response);
extern uint32_t DAP_ProcessCommand (const uint8_t *request, uint8_t *response);
extern uint32_t DAP_ExecuteCommand (const uint8_t *request, uint8_t *response);
extern void DAP_Setup (void);
// Configurable delay for clock generation
#ifndef DELAY_SLOW_CYCLES
#define DELAY_SLOW_CYCLES 3U // Number of cycles for one iteration
#endif
#if defined(__CC_ARM)
__STATIC_FORCEINLINE void PIN_DELAY_SLOW (uint32_t delay) {
uint32_t count = delay;
while (--count);
}
#else
__STATIC_FORCEINLINE void PIN_DELAY_SLOW (uint32_t delay) {
__ASM volatile (
".syntax unified\n"
"0:\n\t"
"subs %0,%0,#1\n\t"
"bne 0b\n"
: "+l" (delay) : : "cc"
);
}
#endif
// Fixed delay for fast clock generation
#ifndef DELAY_FAST_CYCLES
#define DELAY_FAST_CYCLES 0U // Number of cycles: 0..3
#endif
__STATIC_FORCEINLINE void PIN_DELAY_FAST (void) {
#if (DELAY_FAST_CYCLES >= 1U)
__NOP();
#endif
#if (DELAY_FAST_CYCLES >= 2U)
__NOP();
#endif
#if (DELAY_FAST_CYCLES >= 3U)
__NOP();
#endif
}
#ifdef __cplusplus
}
#endif
#endif /* __DAP_H__ */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,100 @@
/*
* Copyright (c) 2013-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 1. December 2017
* $Revision: V2.0.0
*
* Project: CMSIS-DAP Source
* Title: DAP_vendor.c CMSIS-DAP Vendor Commands
*
*---------------------------------------------------------------------------*/
#include "DAP_config.h"
#include "DAP.h"
//**************************************************************************************************
/**
\defgroup DAP_Vendor_Adapt_gr Adapt Vendor Commands
\ingroup DAP_Vendor_gr
@{
The file DAP_vendor.c provides template source code for extension of a Debug Unit with
Vendor Commands. Copy this file to the project folder of the Debug Unit and add the
file to the MDK-ARM project under the file group Configuration.
*/
/** Process DAP Vendor Command and prepare Response Data
\param request pointer to request data
\param response pointer to response data
\return number of bytes in response (lower 16 bits)
number of bytes in request (upper 16 bits)
*/
uint32_t DAP_ProcessVendorCommand(const uint8_t *request, uint8_t *response) {
uint32_t num = (1U << 16) | 1U;
*response++ = *request; // copy Command ID
switch (*request++) { // first byte in request is Command ID
case ID_DAP_Vendor0:
#if 0 // example user command
num += 1U << 16; // increment request count
if (*request == 1U) { // when first command data byte is 1
*response++ = 'X'; // send 'X' as response
num++; // increment response count
}
#endif
break;
case ID_DAP_Vendor1: break;
case ID_DAP_Vendor2: break;
case ID_DAP_Vendor3: break;
case ID_DAP_Vendor4: break;
case ID_DAP_Vendor5: break;
case ID_DAP_Vendor6: break;
case ID_DAP_Vendor7: break;
case ID_DAP_Vendor8: break;
case ID_DAP_Vendor9: break;
case ID_DAP_Vendor10: break;
case ID_DAP_Vendor11: break;
case ID_DAP_Vendor12: break;
case ID_DAP_Vendor13: break;
case ID_DAP_Vendor14: break;
case ID_DAP_Vendor15: break;
case ID_DAP_Vendor16: break;
case ID_DAP_Vendor17: break;
case ID_DAP_Vendor18: break;
case ID_DAP_Vendor19: break;
case ID_DAP_Vendor20: break;
case ID_DAP_Vendor21: break;
case ID_DAP_Vendor22: break;
case ID_DAP_Vendor23: break;
case ID_DAP_Vendor24: break;
case ID_DAP_Vendor25: break;
case ID_DAP_Vendor26: break;
case ID_DAP_Vendor27: break;
case ID_DAP_Vendor28: break;
case ID_DAP_Vendor29: break;
case ID_DAP_Vendor30: break;
case ID_DAP_Vendor31: break;
}
return (num);
}
///@}

View File

@ -0,0 +1,370 @@
/*
* Copyright (c) 2013-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 1. December 2017
* $Revision: V2.0.0
*
* Project: CMSIS-DAP Source
* Title: JTAG_DP.c CMSIS-DAP JTAG DP I/O
*
*---------------------------------------------------------------------------*/
#include "DAP_config.h"
#include "DAP.h"
// JTAG Macros
#define PIN_TCK_SET PIN_SWCLK_TCK_SET
#define PIN_TCK_CLR PIN_SWCLK_TCK_CLR
#define PIN_TMS_SET PIN_SWDIO_TMS_SET
#define PIN_TMS_CLR PIN_SWDIO_TMS_CLR
#define JTAG_CYCLE_TCK() \
PIN_TCK_CLR(); \
PIN_DELAY(); \
PIN_TCK_SET(); \
PIN_DELAY()
#define JTAG_CYCLE_TDI(tdi) \
PIN_TDI_OUT(tdi); \
PIN_TCK_CLR(); \
PIN_DELAY(); \
PIN_TCK_SET(); \
PIN_DELAY()
#define JTAG_CYCLE_TDO(tdo) \
PIN_TCK_CLR(); \
PIN_DELAY(); \
tdo = PIN_TDO_IN(); \
PIN_TCK_SET(); \
PIN_DELAY()
#define JTAG_CYCLE_TDIO(tdi,tdo) \
PIN_TDI_OUT(tdi); \
PIN_TCK_CLR(); \
PIN_DELAY(); \
tdo = PIN_TDO_IN(); \
PIN_TCK_SET(); \
PIN_DELAY()
#define PIN_DELAY() PIN_DELAY_SLOW(DAP_Data.clock_delay)
#if (DAP_JTAG != 0)
// Generate JTAG Sequence
// info: sequence information
// tdi: pointer to TDI generated data
// tdo: pointer to TDO captured data
// return: none
void JTAG_Sequence (uint32_t info, const uint8_t *tdi, uint8_t *tdo) {
uint32_t i_val;
uint32_t o_val;
uint32_t bit;
uint32_t n, k;
n = info & JTAG_SEQUENCE_TCK;
if (n == 0U) {
n = 64U;
}
if (info & JTAG_SEQUENCE_TMS) {
PIN_TMS_SET();
} else {
PIN_TMS_CLR();
}
while (n) {
i_val = *tdi++;
o_val = 0U;
for (k = 8U; k && n; k--, n--) {
JTAG_CYCLE_TDIO(i_val, bit);
i_val >>= 1;
o_val >>= 1;
o_val |= bit << 7;
}
o_val >>= k;
if (info & JTAG_SEQUENCE_TDO) {
*tdo++ = (uint8_t)o_val;
}
}
}
// JTAG Set IR
// ir: IR value
// return: none
#define JTAG_IR_Function(speed) /**/ \
static void JTAG_IR_##speed (uint32_t ir) { \
uint32_t n; \
\
PIN_TMS_SET(); \
JTAG_CYCLE_TCK(); /* Select-DR-Scan */ \
JTAG_CYCLE_TCK(); /* Select-IR-Scan */ \
PIN_TMS_CLR(); \
JTAG_CYCLE_TCK(); /* Capture-IR */ \
JTAG_CYCLE_TCK(); /* Shift-IR */ \
\
PIN_TDI_OUT(1U); \
for (n = DAP_Data.jtag_dev.ir_before[DAP_Data.jtag_dev.index]; n; n--) { \
JTAG_CYCLE_TCK(); /* Bypass before data */ \
} \
for (n = DAP_Data.jtag_dev.ir_length[DAP_Data.jtag_dev.index] - 1U; n; n--) { \
JTAG_CYCLE_TDI(ir); /* Set IR bits (except last) */ \
ir >>= 1; \
} \
n = DAP_Data.jtag_dev.ir_after[DAP_Data.jtag_dev.index]; \
if (n) { \
JTAG_CYCLE_TDI(ir); /* Set last IR bit */ \
PIN_TDI_OUT(1U); \
for (--n; n; n--) { \
JTAG_CYCLE_TCK(); /* Bypass after data */ \
} \
PIN_TMS_SET(); \
JTAG_CYCLE_TCK(); /* Bypass & Exit1-IR */ \
} else { \
PIN_TMS_SET(); \
JTAG_CYCLE_TDI(ir); /* Set last IR bit & Exit1-IR */ \
} \
\
JTAG_CYCLE_TCK(); /* Update-IR */ \
PIN_TMS_CLR(); \
JTAG_CYCLE_TCK(); /* Idle */ \
PIN_TDI_OUT(1U); \
}
// JTAG Transfer I/O
// request: A[3:2] RnW APnDP
// data: DATA[31:0]
// return: ACK[2:0]
#define JTAG_TransferFunction(speed) /**/ \
static uint8_t JTAG_Transfer##speed (uint32_t request, uint32_t *data) { \
uint32_t ack; \
uint32_t bit; \
uint32_t val; \
uint32_t n; \
\
PIN_TMS_SET(); \
JTAG_CYCLE_TCK(); /* Select-DR-Scan */ \
PIN_TMS_CLR(); \
JTAG_CYCLE_TCK(); /* Capture-DR */ \
JTAG_CYCLE_TCK(); /* Shift-DR */ \
\
for (n = DAP_Data.jtag_dev.index; n; n--) { \
JTAG_CYCLE_TCK(); /* Bypass before data */ \
} \
\
JTAG_CYCLE_TDIO(request >> 1, bit); /* Set RnW, Get ACK.0 */ \
ack = bit << 1; \
JTAG_CYCLE_TDIO(request >> 2, bit); /* Set A2, Get ACK.1 */ \
ack |= bit << 0; \
JTAG_CYCLE_TDIO(request >> 3, bit); /* Set A3, Get ACK.2 */ \
ack |= bit << 2; \
\
if (ack != DAP_TRANSFER_OK) { \
/* Exit on error */ \
PIN_TMS_SET(); \
JTAG_CYCLE_TCK(); /* Exit1-DR */ \
goto exit; \
} \
\
if (request & DAP_TRANSFER_RnW) { \
/* Read Transfer */ \
val = 0U; \
for (n = 31U; n; n--) { \
JTAG_CYCLE_TDO(bit); /* Get D0..D30 */ \
val |= bit << 31; \
val >>= 1; \
} \
n = DAP_Data.jtag_dev.count - DAP_Data.jtag_dev.index - 1U; \
if (n) { \
JTAG_CYCLE_TDO(bit); /* Get D31 */ \
for (--n; n; n--) { \
JTAG_CYCLE_TCK(); /* Bypass after data */ \
} \
PIN_TMS_SET(); \
JTAG_CYCLE_TCK(); /* Bypass & Exit1-DR */ \
} else { \
PIN_TMS_SET(); \
JTAG_CYCLE_TDO(bit); /* Get D31 & Exit1-DR */ \
} \
val |= bit << 31; \
if (data) { *data = val; } \
} else { \
/* Write Transfer */ \
val = *data; \
for (n = 31U; n; n--) { \
JTAG_CYCLE_TDI(val); /* Set D0..D30 */ \
val >>= 1; \
} \
n = DAP_Data.jtag_dev.count - DAP_Data.jtag_dev.index - 1U; \
if (n) { \
JTAG_CYCLE_TDI(val); /* Set D31 */ \
for (--n; n; n--) { \
JTAG_CYCLE_TCK(); /* Bypass after data */ \
} \
PIN_TMS_SET(); \
JTAG_CYCLE_TCK(); /* Bypass & Exit1-DR */ \
} else { \
PIN_TMS_SET(); \
JTAG_CYCLE_TDI(val); /* Set D31 & Exit1-DR */ \
} \
} \
\
exit: \
JTAG_CYCLE_TCK(); /* Update-DR */ \
PIN_TMS_CLR(); \
JTAG_CYCLE_TCK(); /* Idle */ \
PIN_TDI_OUT(1U); \
\
/* Capture Timestamp */ \
if (request & DAP_TRANSFER_TIMESTAMP) { \
DAP_Data.timestamp = TIMESTAMP_GET(); \
} \
\
/* Idle cycles */ \
n = DAP_Data.transfer.idle_cycles; \
while (n--) { \
JTAG_CYCLE_TCK(); /* Idle */ \
} \
\
return ((uint8_t)ack); \
}
#undef PIN_DELAY
#define PIN_DELAY() PIN_DELAY_FAST()
JTAG_IR_Function(Fast)
JTAG_TransferFunction(Fast)
#undef PIN_DELAY
#define PIN_DELAY() PIN_DELAY_SLOW(DAP_Data.clock_delay)
JTAG_IR_Function(Slow)
JTAG_TransferFunction(Slow)
// JTAG Read IDCODE register
// return: value read
uint32_t JTAG_ReadIDCode (void) {
uint32_t bit;
uint32_t val;
uint32_t n;
PIN_TMS_SET();
JTAG_CYCLE_TCK(); /* Select-DR-Scan */
PIN_TMS_CLR();
JTAG_CYCLE_TCK(); /* Capture-DR */
JTAG_CYCLE_TCK(); /* Shift-DR */
for (n = DAP_Data.jtag_dev.index; n; n--) {
JTAG_CYCLE_TCK(); /* Bypass before data */
}
val = 0U;
for (n = 31U; n; n--) {
JTAG_CYCLE_TDO(bit); /* Get D0..D30 */
val |= bit << 31;
val >>= 1;
}
PIN_TMS_SET();
JTAG_CYCLE_TDO(bit); /* Get D31 & Exit1-DR */
val |= bit << 31;
JTAG_CYCLE_TCK(); /* Update-DR */
PIN_TMS_CLR();
JTAG_CYCLE_TCK(); /* Idle */
return (val);
}
// JTAG Write ABORT register
// data: value to write
// return: none
void JTAG_WriteAbort (uint32_t data) {
uint32_t n;
PIN_TMS_SET();
JTAG_CYCLE_TCK(); /* Select-DR-Scan */
PIN_TMS_CLR();
JTAG_CYCLE_TCK(); /* Capture-DR */
JTAG_CYCLE_TCK(); /* Shift-DR */
for (n = DAP_Data.jtag_dev.index; n; n--) {
JTAG_CYCLE_TCK(); /* Bypass before data */
}
PIN_TDI_OUT(0U);
JTAG_CYCLE_TCK(); /* Set RnW=0 (Write) */
JTAG_CYCLE_TCK(); /* Set A2=0 */
JTAG_CYCLE_TCK(); /* Set A3=0 */
for (n = 31U; n; n--) {
JTAG_CYCLE_TDI(data); /* Set D0..D30 */
data >>= 1;
}
n = DAP_Data.jtag_dev.count - DAP_Data.jtag_dev.index - 1U;
if (n) {
JTAG_CYCLE_TDI(data); /* Set D31 */
for (--n; n; n--) {
JTAG_CYCLE_TCK(); /* Bypass after data */
}
PIN_TMS_SET();
JTAG_CYCLE_TCK(); /* Bypass & Exit1-DR */
} else {
PIN_TMS_SET();
JTAG_CYCLE_TDI(data); /* Set D31 & Exit1-DR */
}
JTAG_CYCLE_TCK(); /* Update-DR */
PIN_TMS_CLR();
JTAG_CYCLE_TCK(); /* Idle */
PIN_TDI_OUT(1U);
}
// JTAG Set IR
// ir: IR value
// return: none
void JTAG_IR (uint32_t ir) {
if (DAP_Data.fast_clock) {
JTAG_IR_Fast(ir);
} else {
JTAG_IR_Slow(ir);
}
}
// JTAG Transfer I/O
// request: A[3:2] RnW APnDP
// data: DATA[31:0]
// return: ACK[2:0]
uint8_t JTAG_Transfer(uint32_t request, uint32_t *data) {
if (DAP_Data.fast_clock) {
return JTAG_TransferFast(request, data);
} else {
return JTAG_TransferSlow(request, data);
}
}
#endif /* (DAP_JTAG != 0) */

View File

@ -0,0 +1,798 @@
/*
* Copyright (c) 2013-2021 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 29. March 2021
* $Revision: V2.0.1
*
* Project: CMSIS-DAP Source
* Title: SWO.c CMSIS-DAP SWO I/O
*
*---------------------------------------------------------------------------*/
#include "DAP_config.h"
#include "DAP.h"
#if (SWO_UART != 0)
#include "Driver_USART.h"
#endif
#if (SWO_STREAM != 0)
#include "cmsis_os2.h"
#define osObjectsExternal
#include "osObjects.h"
#endif
#if (SWO_STREAM != 0)
#ifdef DAP_FW_V1
#error "SWO Streaming Trace not supported in DAP V1!"
#endif
#endif
#if (SWO_UART != 0)
// USART Driver
#define _USART_Driver_(n) Driver_USART##n
#define USART_Driver_(n) _USART_Driver_(n)
extern ARM_DRIVER_USART USART_Driver_(SWO_UART_DRIVER);
#define pUSART (&USART_Driver_(SWO_UART_DRIVER))
static uint8_t USART_Ready = 0U;
#endif /* (SWO_UART != 0) */
#if ((SWO_UART != 0) || (SWO_MANCHESTER != 0))
#define SWO_STREAM_TIMEOUT 50U /* Stream timeout in ms */
#define USB_BLOCK_SIZE 512U /* USB Block Size */
#define TRACE_BLOCK_SIZE 64U /* Trace Block Size (2^n: 32...512) */
// Trace State
static uint8_t TraceTransport = 0U; /* Trace Transport */
static uint8_t TraceMode = 0U; /* Trace Mode */
static uint8_t TraceStatus = 0U; /* Trace Status without Errors */
static uint8_t TraceError[2] = {0U, 0U}; /* Trace Error flags (banked) */
static uint8_t TraceError_n = 0U; /* Active Trace Error bank */
// Trace Buffer
static uint8_t TraceBuf[SWO_BUFFER_SIZE]; /* Trace Buffer (must be 2^n) */
static volatile uint32_t TraceIndexI = 0U; /* Incoming Trace Index */
static volatile uint32_t TraceIndexO = 0U; /* Outgoing Trace Index */
static volatile uint8_t TraceUpdate; /* Trace Update Flag */
static uint32_t TraceBlockSize; /* Current Trace Block Size */
#if (TIMESTAMP_CLOCK != 0U)
// Trace Timestamp
static volatile struct {
uint32_t index;
uint32_t tick;
} TraceTimestamp;
#endif
// Trace Helper functions
static void ClearTrace (void);
static void ResumeTrace (void);
static uint32_t GetTraceCount (void);
static uint8_t GetTraceStatus (void);
static void SetTraceError (uint8_t flag);
#if (SWO_STREAM != 0)
extern osThreadId_t SWO_ThreadId;
static volatile uint8_t TransferBusy = 0U; /* Transfer Busy Flag */
static uint32_t TransferSize; /* Current Transfer Size */
#endif
#if (SWO_UART != 0)
// USART Driver Callback function
// event: event mask
static void USART_Callback (uint32_t event) {
uint32_t index_i;
uint32_t index_o;
uint32_t count;
uint32_t num;
if (event & ARM_USART_EVENT_RECEIVE_COMPLETE) {
#if (TIMESTAMP_CLOCK != 0U)
TraceTimestamp.tick = TIMESTAMP_GET();
#endif
index_o = TraceIndexO;
index_i = TraceIndexI;
index_i += TraceBlockSize;
TraceIndexI = index_i;
#if (TIMESTAMP_CLOCK != 0U)
TraceTimestamp.index = index_i;
#endif
num = TRACE_BLOCK_SIZE - (index_i & (TRACE_BLOCK_SIZE - 1U));
count = index_i - index_o;
if (count <= (SWO_BUFFER_SIZE - num)) {
index_i &= SWO_BUFFER_SIZE - 1U;
TraceBlockSize = num;
pUSART->Receive(&TraceBuf[index_i], num);
} else {
TraceStatus = DAP_SWO_CAPTURE_ACTIVE | DAP_SWO_CAPTURE_PAUSED;
}
TraceUpdate = 1U;
#if (SWO_STREAM != 0)
if (TraceTransport == 2U) {
if (count >= (USB_BLOCK_SIZE - (index_o & (USB_BLOCK_SIZE - 1U)))) {
osThreadFlagsSet(SWO_ThreadId, 1U);
}
}
#endif
}
if (event & ARM_USART_EVENT_RX_OVERFLOW) {
SetTraceError(DAP_SWO_BUFFER_OVERRUN);
}
if (event & (ARM_USART_EVENT_RX_BREAK |
ARM_USART_EVENT_RX_FRAMING_ERROR |
ARM_USART_EVENT_RX_PARITY_ERROR)) {
SetTraceError(DAP_SWO_STREAM_ERROR);
}
}
// Enable or disable SWO Mode (UART)
// enable: enable flag
// return: 1 - Success, 0 - Error
__WEAK uint32_t SWO_Mode_UART (uint32_t enable) {
int32_t status;
USART_Ready = 0U;
if (enable != 0U) {
status = pUSART->Initialize(USART_Callback);
if (status != ARM_DRIVER_OK) {
return (0U);
}
status = pUSART->PowerControl(ARM_POWER_FULL);
if (status != ARM_DRIVER_OK) {
pUSART->Uninitialize();
return (0U);
}
} else {
pUSART->Control(ARM_USART_CONTROL_RX, 0U);
pUSART->Control(ARM_USART_ABORT_RECEIVE, 0U);
pUSART->PowerControl(ARM_POWER_OFF);
pUSART->Uninitialize();
}
return (1U);
}
// Configure SWO Baudrate (UART)
// baudrate: requested baudrate
// return: actual baudrate or 0 when not configured
__WEAK uint32_t SWO_Baudrate_UART (uint32_t baudrate) {
int32_t status;
uint32_t index;
uint32_t num;
if (baudrate > SWO_UART_MAX_BAUDRATE) {
baudrate = SWO_UART_MAX_BAUDRATE;
}
if (TraceStatus & DAP_SWO_CAPTURE_ACTIVE) {
pUSART->Control(ARM_USART_CONTROL_RX, 0U);
if (pUSART->GetStatus().rx_busy) {
TraceIndexI += pUSART->GetRxCount();
pUSART->Control(ARM_USART_ABORT_RECEIVE, 0U);
}
}
status = pUSART->Control(ARM_USART_MODE_ASYNCHRONOUS |
ARM_USART_DATA_BITS_8 |
ARM_USART_PARITY_NONE |
ARM_USART_STOP_BITS_1,
baudrate);
if (status == ARM_DRIVER_OK) {
USART_Ready = 1U;
} else {
USART_Ready = 0U;
return (0U);
}
if (TraceStatus & DAP_SWO_CAPTURE_ACTIVE) {
if ((TraceStatus & DAP_SWO_CAPTURE_PAUSED) == 0U) {
index = TraceIndexI & (SWO_BUFFER_SIZE - 1U);
num = TRACE_BLOCK_SIZE - (index & (TRACE_BLOCK_SIZE - 1U));
TraceBlockSize = num;
pUSART->Receive(&TraceBuf[index], num);
}
pUSART->Control(ARM_USART_CONTROL_RX, 1U);
}
return (baudrate);
}
// Control SWO Capture (UART)
// active: active flag
// return: 1 - Success, 0 - Error
__WEAK uint32_t SWO_Control_UART (uint32_t active) {
int32_t status;
if (active) {
if (!USART_Ready) {
return (0U);
}
TraceBlockSize = 1U;
status = pUSART->Receive(&TraceBuf[0], 1U);
if (status != ARM_DRIVER_OK) {
return (0U);
}
status = pUSART->Control(ARM_USART_CONTROL_RX, 1U);
if (status != ARM_DRIVER_OK) {
return (0U);
}
} else {
pUSART->Control(ARM_USART_CONTROL_RX, 0U);
if (pUSART->GetStatus().rx_busy) {
TraceIndexI += pUSART->GetRxCount();
pUSART->Control(ARM_USART_ABORT_RECEIVE, 0U);
}
}
return (1U);
}
// Start SWO Capture (UART)
// buf: pointer to buffer for capturing
// num: number of bytes to capture
__WEAK void SWO_Capture_UART (uint8_t *buf, uint32_t num) {
TraceBlockSize = num;
pUSART->Receive(buf, num);
}
// Get SWO Pending Trace Count (UART)
// return: number of pending trace data bytes
__WEAK uint32_t SWO_GetCount_UART (void) {
uint32_t count;
if (pUSART->GetStatus().rx_busy) {
count = pUSART->GetRxCount();
} else {
count = 0U;
}
return (count);
}
#endif /* (SWO_UART != 0) */
#if (SWO_MANCHESTER != 0)
// Enable or disable SWO Mode (Manchester)
// enable: enable flag
// return: 1 - Success, 0 - Error
__WEAK uint32_t SWO_Mode_Manchester (uint32_t enable) {
return (0U);
}
// Configure SWO Baudrate (Manchester)
// baudrate: requested baudrate
// return: actual baudrate or 0 when not configured
__WEAK uint32_t SWO_Baudrate_Manchester (uint32_t baudrate) {
return (0U);
}
// Control SWO Capture (Manchester)
// active: active flag
// return: 1 - Success, 0 - Error
__WEAK uint32_t SWO_Control_Manchester (uint32_t active) {
return (0U);
}
// Start SWO Capture (Manchester)
// buf: pointer to buffer for capturing
// num: number of bytes to capture
__WEAK void SWO_Capture_Manchester (uint8_t *buf, uint32_t num) {
}
// Get SWO Pending Trace Count (Manchester)
// return: number of pending trace data bytes
__WEAK uint32_t SWO_GetCount_Manchester (void) {
}
#endif /* (SWO_MANCHESTER != 0) */
// Clear Trace Errors and Data
static void ClearTrace (void) {
#if (SWO_STREAM != 0)
if (TraceTransport == 2U) {
if (TransferBusy != 0U) {
SWO_AbortTransfer();
TransferBusy = 0U;
}
}
#endif
TraceError[0] = 0U;
TraceError[1] = 0U;
TraceError_n = 0U;
TraceIndexI = 0U;
TraceIndexO = 0U;
#if (TIMESTAMP_CLOCK != 0U)
TraceTimestamp.index = 0U;
TraceTimestamp.tick = 0U;
#endif
}
// Resume Trace Capture
static void ResumeTrace (void) {
uint32_t index_i;
uint32_t index_o;
if (TraceStatus == (DAP_SWO_CAPTURE_ACTIVE | DAP_SWO_CAPTURE_PAUSED)) {
index_i = TraceIndexI;
index_o = TraceIndexO;
if ((index_i - index_o) < SWO_BUFFER_SIZE) {
index_i &= SWO_BUFFER_SIZE - 1U;
switch (TraceMode) {
#if (SWO_UART != 0)
case DAP_SWO_UART:
TraceStatus = DAP_SWO_CAPTURE_ACTIVE;
SWO_Capture_UART(&TraceBuf[index_i], 1U);
break;
#endif
#if (SWO_MANCHESTER != 0)
case DAP_SWO_MANCHESTER:
TraceStatus = DAP_SWO_CAPTURE_ACTIVE;
SWO_Capture_Manchester(&TraceBuf[index_i], 1U);
break;
#endif
default:
break;
}
}
}
}
// Get Trace Count
// return: number of available data bytes in trace buffer
static uint32_t GetTraceCount (void) {
uint32_t count;
if (TraceStatus == DAP_SWO_CAPTURE_ACTIVE) {
do {
TraceUpdate = 0U;
count = TraceIndexI - TraceIndexO;
switch (TraceMode) {
#if (SWO_UART != 0)
case DAP_SWO_UART:
count += SWO_GetCount_UART();
break;
#endif
#if (SWO_MANCHESTER != 0)
case DAP_SWO_MANCHESTER:
count += SWO_GetCount_Manchester();
break;
#endif
default:
break;
}
} while (TraceUpdate != 0U);
} else {
count = TraceIndexI - TraceIndexO;
}
return (count);
}
// Get Trace Status (clear Error flags)
// return: Trace Status (Active flag and Error flags)
static uint8_t GetTraceStatus (void) {
uint8_t status;
uint32_t n;
n = TraceError_n;
TraceError_n ^= 1U;
status = TraceStatus | TraceError[n];
TraceError[n] = 0U;
return (status);
}
// Set Trace Error flag(s)
// flag: error flag(s) to set
static void SetTraceError (uint8_t flag) {
TraceError[TraceError_n] |= flag;
}
// Process SWO Transport command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t SWO_Transport (const uint8_t *request, uint8_t *response) {
uint8_t transport;
uint32_t result;
if ((TraceStatus & DAP_SWO_CAPTURE_ACTIVE) == 0U) {
transport = *request;
switch (transport) {
case 0U:
case 1U:
#if (SWO_STREAM != 0)
case 2U:
#endif
TraceTransport = transport;
result = 1U;
break;
default:
result = 0U;
break;
}
} else {
result = 0U;
}
if (result != 0U) {
*response = DAP_OK;
} else {
*response = DAP_ERROR;
}
return ((1U << 16) | 1U);
}
// Process SWO Mode command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t SWO_Mode (const uint8_t *request, uint8_t *response) {
uint8_t mode;
uint32_t result;
mode = *request;
switch (TraceMode) {
#if (SWO_UART != 0)
case DAP_SWO_UART:
SWO_Mode_UART(0U);
break;
#endif
#if (SWO_MANCHESTER != 0)
case DAP_SWO_MANCHESTER:
SWO_Mode_Manchester(0U);
break;
#endif
default:
break;
}
switch (mode) {
case DAP_SWO_OFF:
result = 1U;
break;
#if (SWO_UART != 0)
case DAP_SWO_UART:
result = SWO_Mode_UART(1U);
break;
#endif
#if (SWO_MANCHESTER != 0)
case DAP_SWO_MANCHESTER:
result = SWO_Mode_Manchester(1U);
break;
#endif
default:
result = 0U;
break;
}
if (result != 0U) {
TraceMode = mode;
} else {
TraceMode = DAP_SWO_OFF;
}
TraceStatus = 0U;
if (result != 0U) {
*response = DAP_OK;
} else {
*response = DAP_ERROR;
}
return ((1U << 16) | 1U);
}
// Process SWO Baudrate command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t SWO_Baudrate (const uint8_t *request, uint8_t *response) {
uint32_t baudrate;
baudrate = (uint32_t)(*(request+0) << 0) |
(uint32_t)(*(request+1) << 8) |
(uint32_t)(*(request+2) << 16) |
(uint32_t)(*(request+3) << 24);
switch (TraceMode) {
#if (SWO_UART != 0)
case DAP_SWO_UART:
baudrate = SWO_Baudrate_UART(baudrate);
break;
#endif
#if (SWO_MANCHESTER != 0)
case DAP_SWO_MANCHESTER:
baudrate = SWO_Baudrate_Manchester(baudrate);
break;
#endif
default:
baudrate = 0U;
break;
}
if (baudrate == 0U) {
TraceStatus = 0U;
}
*response++ = (uint8_t)(baudrate >> 0);
*response++ = (uint8_t)(baudrate >> 8);
*response++ = (uint8_t)(baudrate >> 16);
*response = (uint8_t)(baudrate >> 24);
return ((4U << 16) | 4U);
}
// Process SWO Control command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t SWO_Control (const uint8_t *request, uint8_t *response) {
uint8_t active;
uint32_t result;
active = *request & DAP_SWO_CAPTURE_ACTIVE;
if (active != (TraceStatus & DAP_SWO_CAPTURE_ACTIVE)) {
if (active) {
ClearTrace();
}
switch (TraceMode) {
#if (SWO_UART != 0)
case DAP_SWO_UART:
result = SWO_Control_UART(active);
break;
#endif
#if (SWO_MANCHESTER != 0)
case DAP_SWO_MANCHESTER:
result = SWO_Control_Manchester(active);
break;
#endif
default:
result = 0U;
break;
}
if (result != 0U) {
TraceStatus = active;
#if (SWO_STREAM != 0)
if (TraceTransport == 2U) {
osThreadFlagsSet(SWO_ThreadId, 1U);
}
#endif
}
} else {
result = 1U;
}
if (result != 0U) {
*response = DAP_OK;
} else {
*response = DAP_ERROR;
}
return ((1U << 16) | 1U);
}
// Process SWO Status command and prepare response
// response: pointer to response data
// return: number of bytes in response
uint32_t SWO_Status (uint8_t *response) {
uint8_t status;
uint32_t count;
status = GetTraceStatus();
count = GetTraceCount();
*response++ = status;
*response++ = (uint8_t)(count >> 0);
*response++ = (uint8_t)(count >> 8);
*response++ = (uint8_t)(count >> 16);
*response = (uint8_t)(count >> 24);
return (5U);
}
// Process SWO Extended Status command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t SWO_ExtendedStatus (const uint8_t *request, uint8_t *response) {
uint8_t cmd;
uint8_t status;
uint32_t count;
#if (TIMESTAMP_CLOCK != 0U)
uint32_t index;
uint32_t tick;
#endif
uint32_t num;
num = 0U;
cmd = *request;
if (cmd & 0x01U) {
status = GetTraceStatus();
*response++ = status;
num += 1U;
}
if (cmd & 0x02U) {
count = GetTraceCount();
*response++ = (uint8_t)(count >> 0);
*response++ = (uint8_t)(count >> 8);
*response++ = (uint8_t)(count >> 16);
*response++ = (uint8_t)(count >> 24);
num += 4U;
}
#if (TIMESTAMP_CLOCK != 0U)
if (cmd & 0x04U) {
do {
TraceUpdate = 0U;
index = TraceTimestamp.index;
tick = TraceTimestamp.tick;
} while (TraceUpdate != 0U);
*response++ = (uint8_t)(index >> 0);
*response++ = (uint8_t)(index >> 8);
*response++ = (uint8_t)(index >> 16);
*response++ = (uint8_t)(index >> 24);
*response++ = (uint8_t)(tick >> 0);
*response++ = (uint8_t)(tick >> 8);
*response++ = (uint8_t)(tick >> 16);
*response++ = (uint8_t)(tick >> 24);
num += 4U;
}
#endif
return ((1U << 16) | num);
}
// Process SWO Data command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t SWO_Data (const uint8_t *request, uint8_t *response) {
uint8_t status;
uint32_t count;
uint32_t index;
uint32_t n, i;
status = GetTraceStatus();
count = GetTraceCount();
if (TraceTransport == 1U) {
n = (uint32_t)(*(request+0) << 0) |
(uint32_t)(*(request+1) << 8);
if (n > (DAP_PACKET_SIZE - 4U)) {
n = DAP_PACKET_SIZE - 4U;
}
if (count > n) {
count = n;
}
} else {
count = 0U;
}
*response++ = status;
*response++ = (uint8_t)(count >> 0);
*response++ = (uint8_t)(count >> 8);
if (TraceTransport == 1U) {
index = TraceIndexO;
for (i = index, n = count; n; n--) {
i &= SWO_BUFFER_SIZE - 1U;
*response++ = TraceBuf[i++];
}
TraceIndexO = index + count;
ResumeTrace();
}
return ((2U << 16) | (3U + count));
}
#if (SWO_STREAM != 0)
// SWO Data Transfer complete callback
void SWO_TransferComplete (void) {
TraceIndexO += TransferSize;
TransferBusy = 0U;
ResumeTrace();
osThreadFlagsSet(SWO_ThreadId, 1U);
}
// SWO Thread
__NO_RETURN void SWO_Thread (void *argument) {
uint32_t timeout;
uint32_t flags;
uint32_t count;
uint32_t index;
uint32_t i, n;
(void) argument;
timeout = osWaitForever;
for (;;) {
flags = osThreadFlagsWait(1U, osFlagsWaitAny, timeout);
if (TraceStatus & DAP_SWO_CAPTURE_ACTIVE) {
timeout = SWO_STREAM_TIMEOUT;
} else {
timeout = osWaitForever;
flags = osFlagsErrorTimeout;
}
if (TransferBusy == 0U) {
count = GetTraceCount();
if (count != 0U) {
index = TraceIndexO & (SWO_BUFFER_SIZE - 1U);
n = SWO_BUFFER_SIZE - index;
if (count > n) {
count = n;
}
if (flags != osFlagsErrorTimeout) {
i = index & (USB_BLOCK_SIZE - 1U);
if (i == 0U) {
count &= ~(USB_BLOCK_SIZE - 1U);
} else {
n = USB_BLOCK_SIZE - i;
if (count >= n) {
count = n;
} else {
count = 0U;
}
}
}
if (count != 0U) {
TransferSize = count;
TransferBusy = 1U;
SWO_QueueTransfer(&TraceBuf[index], count);
}
}
}
}
}
#endif /* (SWO_STREAM != 0) */
#endif /* ((SWO_UART != 0) || (SWO_MANCHESTER != 0)) */

View File

@ -0,0 +1,286 @@
/*
* Copyright (c) 2013-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 1. December 2017
* $Revision: V2.0.0
*
* Project: CMSIS-DAP Source
* Title: SW_DP.c CMSIS-DAP SW DP I/O
*
*---------------------------------------------------------------------------*/
#include "DAP_config.h"
#include "DAP.h"
// SW Macros
#define PIN_SWCLK_SET PIN_SWCLK_TCK_SET
#define PIN_SWCLK_CLR PIN_SWCLK_TCK_CLR
#define SW_CLOCK_CYCLE() \
PIN_SWCLK_CLR(); \
PIN_DELAY(); \
PIN_SWCLK_SET(); \
PIN_DELAY()
#define SW_WRITE_BIT(bit) \
PIN_SWDIO_OUT(bit); \
PIN_SWCLK_CLR(); \
PIN_DELAY(); \
PIN_SWCLK_SET(); \
PIN_DELAY()
#define SW_READ_BIT(bit) \
PIN_SWCLK_CLR(); \
PIN_DELAY(); \
bit = PIN_SWDIO_IN(); \
PIN_SWCLK_SET(); \
PIN_DELAY()
#define PIN_DELAY() PIN_DELAY_SLOW(DAP_Data.clock_delay)
// Generate SWJ Sequence
// count: sequence bit count
// data: pointer to sequence bit data
// return: none
#if ((DAP_SWD != 0) || (DAP_JTAG != 0))
void SWJ_Sequence (uint32_t count, const uint8_t *data) {
uint32_t val;
uint32_t n;
val = 0U;
n = 0U;
while (count--) {
if (n == 0U) {
val = *data++;
n = 8U;
}
if (val & 1U) {
PIN_SWDIO_TMS_SET();
} else {
PIN_SWDIO_TMS_CLR();
}
SW_CLOCK_CYCLE();
val >>= 1;
n--;
}
}
#endif
// Generate SWD Sequence
// info: sequence information
// swdo: pointer to SWDIO generated data
// swdi: pointer to SWDIO captured data
// return: none
#if (DAP_SWD != 0)
void SWD_Sequence (uint32_t info, const uint8_t *swdo, uint8_t *swdi) {
uint32_t val;
uint32_t bit;
uint32_t n, k;
n = info & SWD_SEQUENCE_CLK;
if (n == 0U) {
n = 64U;
}
if (info & SWD_SEQUENCE_DIN) {
while (n) {
val = 0U;
for (k = 8U; k && n; k--, n--) {
SW_READ_BIT(bit);
val >>= 1;
val |= bit << 7;
}
val >>= k;
*swdi++ = (uint8_t)val;
}
} else {
while (n) {
val = *swdo++;
for (k = 8U; k && n; k--, n--) {
SW_WRITE_BIT(val);
val >>= 1;
}
}
}
}
#endif
#if (DAP_SWD != 0)
// SWD Transfer I/O
// request: A[3:2] RnW APnDP
// data: DATA[31:0]
// return: ACK[2:0]
#define SWD_TransferFunction(speed) /**/ \
static uint8_t SWD_Transfer##speed (uint32_t request, uint32_t *data) { \
uint32_t ack; \
uint32_t bit; \
uint32_t val; \
uint32_t parity; \
\
uint32_t n; \
\
/* Packet Request */ \
parity = 0U; \
SW_WRITE_BIT(1U); /* Start Bit */ \
bit = request >> 0; \
SW_WRITE_BIT(bit); /* APnDP Bit */ \
parity += bit; \
bit = request >> 1; \
SW_WRITE_BIT(bit); /* RnW Bit */ \
parity += bit; \
bit = request >> 2; \
SW_WRITE_BIT(bit); /* A2 Bit */ \
parity += bit; \
bit = request >> 3; \
SW_WRITE_BIT(bit); /* A3 Bit */ \
parity += bit; \
SW_WRITE_BIT(parity); /* Parity Bit */ \
SW_WRITE_BIT(0U); /* Stop Bit */ \
SW_WRITE_BIT(1U); /* Park Bit */ \
\
/* Turnaround */ \
PIN_SWDIO_OUT_DISABLE(); \
for (n = DAP_Data.swd_conf.turnaround; n; n--) { \
SW_CLOCK_CYCLE(); \
} \
\
/* Acknowledge response */ \
SW_READ_BIT(bit); \
ack = bit << 0; \
SW_READ_BIT(bit); \
ack |= bit << 1; \
SW_READ_BIT(bit); \
ack |= bit << 2; \
\
if (ack == DAP_TRANSFER_OK) { /* OK response */ \
/* Data transfer */ \
if (request & DAP_TRANSFER_RnW) { \
/* Read data */ \
val = 0U; \
parity = 0U; \
for (n = 32U; n; n--) { \
SW_READ_BIT(bit); /* Read RDATA[0:31] */ \
parity += bit; \
val >>= 1; \
val |= bit << 31; \
} \
SW_READ_BIT(bit); /* Read Parity */ \
if ((parity ^ bit) & 1U) { \
ack = DAP_TRANSFER_ERROR; \
} \
if (data) { *data = val; } \
/* Turnaround */ \
for (n = DAP_Data.swd_conf.turnaround; n; n--) { \
SW_CLOCK_CYCLE(); \
} \
PIN_SWDIO_OUT_ENABLE(); \
} else { \
/* Turnaround */ \
for (n = DAP_Data.swd_conf.turnaround; n; n--) { \
SW_CLOCK_CYCLE(); \
} \
PIN_SWDIO_OUT_ENABLE(); \
/* Write data */ \
val = *data; \
parity = 0U; \
for (n = 32U; n; n--) { \
SW_WRITE_BIT(val); /* Write WDATA[0:31] */ \
parity += val; \
val >>= 1; \
} \
SW_WRITE_BIT(parity); /* Write Parity Bit */ \
} \
/* Capture Timestamp */ \
if (request & DAP_TRANSFER_TIMESTAMP) { \
DAP_Data.timestamp = TIMESTAMP_GET(); \
} \
/* Idle cycles */ \
n = DAP_Data.transfer.idle_cycles; \
if (n) { \
PIN_SWDIO_OUT(0U); \
for (; n; n--) { \
SW_CLOCK_CYCLE(); \
} \
} \
PIN_SWDIO_OUT(1U); \
return ((uint8_t)ack); \
} \
\
if ((ack == DAP_TRANSFER_WAIT) || (ack == DAP_TRANSFER_FAULT)) { \
/* WAIT or FAULT response */ \
if (DAP_Data.swd_conf.data_phase && ((request & DAP_TRANSFER_RnW) != 0U)) { \
for (n = 32U+1U; n; n--) { \
SW_CLOCK_CYCLE(); /* Dummy Read RDATA[0:31] + Parity */ \
} \
} \
/* Turnaround */ \
for (n = DAP_Data.swd_conf.turnaround; n; n--) { \
SW_CLOCK_CYCLE(); \
} \
PIN_SWDIO_OUT_ENABLE(); \
if (DAP_Data.swd_conf.data_phase && ((request & DAP_TRANSFER_RnW) == 0U)) { \
PIN_SWDIO_OUT(0U); \
for (n = 32U+1U; n; n--) { \
SW_CLOCK_CYCLE(); /* Dummy Write WDATA[0:31] + Parity */ \
} \
} \
PIN_SWDIO_OUT(1U); \
return ((uint8_t)ack); \
} \
\
/* Protocol error */ \
for (n = DAP_Data.swd_conf.turnaround + 32U + 1U; n; n--) { \
SW_CLOCK_CYCLE(); /* Back off data phase */ \
} \
PIN_SWDIO_OUT_ENABLE(); \
PIN_SWDIO_OUT(1U); \
return ((uint8_t)ack); \
}
#undef PIN_DELAY
#define PIN_DELAY() PIN_DELAY_FAST()
SWD_TransferFunction(Fast)
#undef PIN_DELAY
#define PIN_DELAY() PIN_DELAY_SLOW(DAP_Data.clock_delay)
SWD_TransferFunction(Slow)
// SWD Transfer I/O
// request: A[3:2] RnW APnDP
// data: DATA[31:0]
// return: ACK[2:0]
uint8_t SWD_Transfer(uint32_t request, uint32_t *data) {
if (DAP_Data.fast_clock) {
return SWD_TransferFast(request, data);
} else {
return SWD_TransferSlow(request, data);
}
}
#endif /* (DAP_SWD != 0) */

View File

@ -0,0 +1,652 @@
/*
* Copyright (c) 2021 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 1. March 2021
* $Revision: V1.0.0
*
* Project: CMSIS-DAP Source
* Title: UART.c CMSIS-DAP UART
*
*---------------------------------------------------------------------------*/
#include "DAP_config.h"
#include "DAP.h"
#if (DAP_UART != 0)
#ifdef DAP_FW_V1
#error "UART Communication Port not supported in DAP V1!"
#endif
#include "Driver_USART.h"
#include "cmsis_os2.h"
#include <string.h>
#define UART_RX_BLOCK_SIZE 32U /* Uart Rx Block Size (must be 2^n) */
// USART Driver
#define _USART_Driver_(n) Driver_USART##n
#define USART_Driver_(n) _USART_Driver_(n)
extern ARM_DRIVER_USART USART_Driver_(DAP_UART_DRIVER);
#define pUSART (&USART_Driver_(DAP_UART_DRIVER))
// UART Configuration
#if (DAP_UART_USB_COM_PORT != 0)
static uint8_t UartTransport = DAP_UART_TRANSPORT_USB_COM_PORT;
#else
static uint8_t UartTransport = DAP_UART_TRANSPORT_NONE;
#endif
// UART Flags
static uint8_t UartConfigured = 0U;
static uint8_t UartReceiveEnabled = 0U;
static uint8_t UartTransmitEnabled = 0U;
static uint8_t UartTransmitActive = 0U;
// UART TX Buffer
static uint8_t UartTxBuf[DAP_UART_TX_BUFFER_SIZE];
static volatile uint32_t UartTxIndexI = 0U;
static volatile uint32_t UartTxIndexO = 0U;
// UART RX Buffer
static uint8_t UartRxBuf[DAP_UART_RX_BUFFER_SIZE];
static volatile uint32_t UartRxIndexI = 0U;
static volatile uint32_t UartRxIndexO = 0U;
// Uart Errors
static volatile uint8_t UartErrorRxDataLost = 0U;
static volatile uint8_t UartErrorFraming = 0U;
static volatile uint8_t UartErrorParity = 0U;
// UART Transmit
static uint32_t UartTxNum = 0U;
// Function prototypes
static uint8_t UART_Init (void);
static void UART_Uninit (void);
static uint8_t UART_Get_Status (void);
static uint8_t UART_Receive_Enable (void);
static uint8_t UART_Transmit_Enable (void);
static void UART_Receive_Disable (void);
static void UART_Transmit_Disable (void);
static void UART_Receive_Flush (void);
static void UART_Transmit_Flush (void);
static void UART_Receive (void);
static void UART_Transmit (void);
// USART Driver Callback function
// event: event mask
static void USART_Callback (uint32_t event) {
if (event & ARM_USART_EVENT_SEND_COMPLETE) {
UartTxIndexO += UartTxNum;
UartTransmitActive = 0U;
UART_Transmit();
}
if (event & ARM_USART_EVENT_RECEIVE_COMPLETE) {
UartRxIndexI += UART_RX_BLOCK_SIZE;
UART_Receive();
}
if (event & ARM_USART_EVENT_RX_OVERFLOW) {
UartErrorRxDataLost = 1U;
}
if (event & ARM_USART_EVENT_RX_FRAMING_ERROR) {
UartErrorFraming = 1U;
}
if (event & ARM_USART_EVENT_RX_PARITY_ERROR) {
UartErrorParity = 1U;
}
}
// Init UART
// return: DAP_OK or DAP_ERROR
static uint8_t UART_Init (void) {
int32_t status;
uint8_t ret = DAP_ERROR;
UartConfigured = 0U;
UartReceiveEnabled = 0U;
UartTransmitEnabled = 0U;
UartTransmitActive = 0U;
UartErrorRxDataLost = 0U;
UartErrorFraming = 0U;
UartErrorParity = 0U;
UartTxIndexI = 0U;
UartTxIndexO = 0U;
UartRxIndexI = 0U;
UartRxIndexO = 0U;
UartTxNum = 0U;
status = pUSART->Initialize(USART_Callback);
if (status == ARM_DRIVER_OK) {
status = pUSART->PowerControl(ARM_POWER_FULL);
}
if (status == ARM_DRIVER_OK) {
ret = DAP_OK;
}
return (ret);
}
// Un-Init UART
static void UART_Uninit (void) {
UartConfigured = 0U;
pUSART->PowerControl(ARM_POWER_OFF);
pUSART->Uninitialize();
}
// Get UART Status
// return: status
static uint8_t UART_Get_Status (void) {
uint8_t status = 0U;
if (UartReceiveEnabled != 0U) {
status |= DAP_UART_STATUS_RX_ENABLED;
}
if (UartErrorRxDataLost != 0U) {
UartErrorRxDataLost = 0U;
status |= DAP_UART_STATUS_RX_DATA_LOST;
}
if (UartErrorFraming != 0U) {
UartErrorFraming = 0U;
status |= DAP_UART_STATUS_FRAMING_ERROR;
}
if (UartErrorParity != 0U) {
UartErrorParity = 0U;
status |= DAP_UART_STATUS_PARITY_ERROR;
}
if (UartTransmitEnabled != 0U) {
status |= DAP_UART_STATUS_TX_ENABLED;
}
return (status);
}
// Enable UART Receive
// return: DAP_OK or DAP_ERROR
static uint8_t UART_Receive_Enable (void) {
int32_t status;
uint8_t ret = DAP_ERROR;
if (UartReceiveEnabled == 0U) {
// Flush Buffers
UartRxIndexI = 0U;
UartRxIndexO = 0U;
UART_Receive();
status = pUSART->Control(ARM_USART_CONTROL_RX, 1U);
if (status == ARM_DRIVER_OK) {
UartReceiveEnabled = 1U;
ret = DAP_OK;
}
} else {
ret = DAP_OK;
}
return (ret);
}
// Enable UART Transmit
// return: DAP_OK or DAP_ERROR
static uint8_t UART_Transmit_Enable (void) {
int32_t status;
uint8_t ret = DAP_ERROR;
if (UartTransmitEnabled == 0U) {
// Flush Buffers
UartTransmitActive = 0U;
UartTxIndexI = 0U;
UartTxIndexO = 0U;
UartTxNum = 0U;
status = pUSART->Control(ARM_USART_CONTROL_TX, 1U);
if (status == ARM_DRIVER_OK) {
UartTransmitEnabled = 1U;
ret = DAP_OK;
}
} else {
ret = DAP_OK;
}
return (ret);
}
// Disable UART Receive
static void UART_Receive_Disable (void) {
if (UartReceiveEnabled != 0U) {
pUSART->Control(ARM_USART_CONTROL_RX, 0U);
pUSART->Control(ARM_USART_ABORT_RECEIVE, 0U);
UartReceiveEnabled = 0U;
}
}
// Disable UART Transmit
static void UART_Transmit_Disable (void) {
if (UartTransmitEnabled != 0U) {
pUSART->Control(ARM_USART_ABORT_SEND, 0U);
pUSART->Control(ARM_USART_CONTROL_TX, 0U);
UartTransmitActive = 0U;
UartTransmitEnabled = 0U;
}
}
// Flush UART Receive buffer
static void UART_Receive_Flush (void) {
pUSART->Control(ARM_USART_ABORT_RECEIVE, 0U);
UartRxIndexI = 0U;
UartRxIndexO = 0U;
if (UartReceiveEnabled != 0U) {
UART_Receive();
}
}
// Flush UART Transmit buffer
static void UART_Transmit_Flush (void) {
pUSART->Control(ARM_USART_ABORT_SEND, 0U);
UartTransmitActive = 0U;
UartTxIndexI = 0U;
UartTxIndexO = 0U;
UartTxNum = 0U;
}
// Receive data from target via UART
static void UART_Receive (void) {
uint32_t index;
index = UartRxIndexI & (DAP_UART_RX_BUFFER_SIZE - 1U);
pUSART->Receive(&UartRxBuf[index], UART_RX_BLOCK_SIZE);
}
// Transmit available data to target via UART
static void UART_Transmit (void) {
uint32_t count;
uint32_t index;
count = UartTxIndexI - UartTxIndexO;
index = UartTxIndexO & (DAP_UART_TX_BUFFER_SIZE - 1U);
if (count != 0U) {
if ((index + count) <= DAP_UART_TX_BUFFER_SIZE) {
UartTxNum = count;
} else {
UartTxNum = DAP_UART_TX_BUFFER_SIZE - index;
}
UartTransmitActive = 1U;
pUSART->Send(&UartTxBuf[index], UartTxNum);
}
}
// Process UART Transport command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t UART_Transport (const uint8_t *request, uint8_t *response) {
uint8_t transport;
uint8_t ret = DAP_ERROR;
transport = *request;
switch (transport) {
case DAP_UART_TRANSPORT_NONE:
switch (UartTransport) {
case DAP_UART_TRANSPORT_NONE:
ret = DAP_OK;
break;
case DAP_UART_TRANSPORT_USB_COM_PORT:
#if (DAP_UART_USB_COM_PORT != 0)
USB_COM_PORT_Activate(0U);
UartTransport = DAP_UART_TRANSPORT_NONE;
ret = DAP_OK;
#endif
break;
case DAP_UART_TRANSPORT_DAP_COMMAND:
UART_Receive_Disable();
UART_Transmit_Disable();
UART_Uninit();
UartTransport = DAP_UART_TRANSPORT_NONE;
ret= DAP_OK;
break;
}
break;
case DAP_UART_TRANSPORT_USB_COM_PORT:
switch (UartTransport) {
case DAP_UART_TRANSPORT_NONE:
#if (DAP_UART_USB_COM_PORT != 0)
if (USB_COM_PORT_Activate(1U) == 0U) {
UartTransport = DAP_UART_TRANSPORT_USB_COM_PORT;
ret = DAP_OK;
}
#endif
break;
case DAP_UART_TRANSPORT_USB_COM_PORT:
ret = DAP_OK;
break;
case DAP_UART_TRANSPORT_DAP_COMMAND:
UART_Receive_Disable();
UART_Transmit_Disable();
UART_Uninit();
UartTransport = DAP_UART_TRANSPORT_NONE;
#if (DAP_UART_USB_COM_PORT != 0)
if (USB_COM_PORT_Activate(1U) == 0U) {
UartTransport = DAP_UART_TRANSPORT_USB_COM_PORT;
ret = DAP_OK;
}
#endif
break;
}
break;
case DAP_UART_TRANSPORT_DAP_COMMAND:
switch (UartTransport) {
case DAP_UART_TRANSPORT_NONE:
ret = UART_Init();
if (ret == DAP_OK) {
UartTransport = DAP_UART_TRANSPORT_DAP_COMMAND;
}
break;
case DAP_UART_TRANSPORT_USB_COM_PORT:
#if (DAP_UART_USB_COM_PORT != 0)
USB_COM_PORT_Activate(0U);
UartTransport = DAP_UART_TRANSPORT_NONE;
#endif
ret = UART_Init();
if (ret == DAP_OK) {
UartTransport = DAP_UART_TRANSPORT_DAP_COMMAND;
}
break;
case DAP_UART_TRANSPORT_DAP_COMMAND:
ret = DAP_OK;
break;
}
break;
default:
break;
}
*response = ret;
return ((1U << 16) | 1U);
}
// Process UART Configure command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t UART_Configure (const uint8_t *request, uint8_t *response) {
uint8_t control, status;
uint32_t baudrate;
int32_t result;
if (UartTransport != DAP_UART_TRANSPORT_DAP_COMMAND) {
status = DAP_UART_CFG_ERROR_DATA_BITS |
DAP_UART_CFG_ERROR_PARITY |
DAP_UART_CFG_ERROR_STOP_BITS;
baudrate = 0U; // baudrate error
} else {
status = 0U;
control = *request;
baudrate = (uint32_t)(*(request+1) << 0) |
(uint32_t)(*(request+2) << 8) |
(uint32_t)(*(request+3) << 16) |
(uint32_t)(*(request+4) << 24);
result = pUSART->Control(control |
ARM_USART_MODE_ASYNCHRONOUS |
ARM_USART_FLOW_CONTROL_NONE,
baudrate);
if (result == ARM_DRIVER_OK) {
UartConfigured = 1U;
} else {
UartConfigured = 0U;
switch (result) {
case ARM_USART_ERROR_BAUDRATE:
status = 0U;
baudrate = 0U;
break;
case ARM_USART_ERROR_DATA_BITS:
status = DAP_UART_CFG_ERROR_DATA_BITS;
break;
case ARM_USART_ERROR_PARITY:
status = DAP_UART_CFG_ERROR_PARITY;
break;
case ARM_USART_ERROR_STOP_BITS:
status = DAP_UART_CFG_ERROR_STOP_BITS;
break;
default:
status = DAP_UART_CFG_ERROR_DATA_BITS |
DAP_UART_CFG_ERROR_PARITY |
DAP_UART_CFG_ERROR_STOP_BITS;
baudrate = 0U;
break;
}
}
}
*response++ = status;
*response++ = (uint8_t)(baudrate >> 0);
*response++ = (uint8_t)(baudrate >> 8);
*response++ = (uint8_t)(baudrate >> 16);
*response = (uint8_t)(baudrate >> 24);
return ((5U << 16) | 5U);
}
// Process UART Control command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t UART_Control (const uint8_t *request, uint8_t *response) {
uint8_t control;
uint8_t result;
uint8_t ret = DAP_OK;
if (UartTransport != DAP_UART_TRANSPORT_DAP_COMMAND) {
ret = DAP_ERROR;
} else {
control = *request;
if ((control & DAP_UART_CONTROL_RX_DISABLE) != 0U) {
// Receive disable
UART_Receive_Disable();
} else if ((control & DAP_UART_CONTROL_RX_ENABLE) != 0U) {
// Receive enable
if (UartConfigured != 0U) {
result = UART_Receive_Enable();
if (result != DAP_OK) {
ret = DAP_ERROR;
}
} else {
ret = DAP_ERROR;
}
}
if ((control & DAP_UART_CONTROL_RX_BUF_FLUSH) != 0U) {
UART_Receive_Flush();
}
if ((control & DAP_UART_CONTROL_TX_DISABLE) != 0U) {
// Transmit disable
UART_Transmit_Disable();
} else if ((control & DAP_UART_CONTROL_TX_ENABLE) != 0U) {
// Transmit enable
if (UartConfigured != 0U) {
result = UART_Transmit_Enable();
if (result != DAP_OK) {
ret = DAP_ERROR;
}
} else {
ret = DAP_ERROR;
}
}
if ((control & DAP_UART_CONTROL_TX_BUF_FLUSH) != 0U) {
UART_Transmit_Flush();
}
}
*response = ret;
return ((1U << 16) | 1U);
}
// Process UART Status command and prepare response
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t UART_Status (uint8_t *response) {
uint32_t rx_cnt, tx_cnt;
uint32_t cnt;
uint8_t status;
if ((UartTransport != DAP_UART_TRANSPORT_DAP_COMMAND) ||
(UartConfigured == 0U)) {
rx_cnt = 0U;
tx_cnt = 0U;
status = 0U;
} else {
rx_cnt = UartRxIndexI - UartRxIndexO;
rx_cnt += pUSART->GetRxCount();
if (rx_cnt > (DAP_UART_RX_BUFFER_SIZE - (UART_RX_BLOCK_SIZE*2))) {
// Overflow
UartErrorRxDataLost = 1U;
rx_cnt = (DAP_UART_RX_BUFFER_SIZE - (UART_RX_BLOCK_SIZE*2));
UartRxIndexO = UartRxIndexI - rx_cnt;
}
tx_cnt = UartTxIndexI - UartTxIndexO;
cnt = pUSART->GetTxCount();
if (UartTransmitActive != 0U) {
tx_cnt -= cnt;
}
status = UART_Get_Status();
}
*response++ = status;
*response++ = (uint8_t)(rx_cnt >> 0);
*response++ = (uint8_t)(rx_cnt >> 8);
*response++ = (uint8_t)(rx_cnt >> 16);
*response++ = (uint8_t)(rx_cnt >> 24);
*response++ = (uint8_t)(tx_cnt >> 0);
*response++ = (uint8_t)(tx_cnt >> 8);
*response++ = (uint8_t)(tx_cnt >> 16);
*response = (uint8_t)(tx_cnt >> 24);
return ((0U << 16) | 9U);
}
// Process UART Transfer command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t UART_Transfer (const uint8_t *request, uint8_t *response) {
uint32_t rx_cnt, tx_cnt;
uint32_t rx_num, tx_num;
uint8_t *rx_data;
const
uint8_t *tx_data;
uint32_t num;
uint32_t index;
uint8_t status;
if (UartTransport != DAP_UART_TRANSPORT_DAP_COMMAND) {
status = 0U;
rx_cnt = 0U;
tx_cnt = 0U;
} else {
// RX Data
rx_cnt = ((uint32_t)(*(request+0) << 0) |
(uint32_t)(*(request+1) << 8));
if (rx_cnt > (DAP_PACKET_SIZE - 6U)) {
rx_cnt = (DAP_PACKET_SIZE - 6U);
}
rx_num = UartRxIndexI - UartRxIndexO;
rx_num += pUSART->GetRxCount();
if (rx_num > (DAP_UART_RX_BUFFER_SIZE - (UART_RX_BLOCK_SIZE*2))) {
// Overflow
UartErrorRxDataLost = 1U;
rx_num = (DAP_UART_RX_BUFFER_SIZE - (UART_RX_BLOCK_SIZE*2));
UartRxIndexO = UartRxIndexI - rx_num;
}
if (rx_cnt > rx_num) {
rx_cnt = rx_num;
}
rx_data = (response+5);
index = UartRxIndexO & (DAP_UART_RX_BUFFER_SIZE - 1U);
if ((index + rx_cnt) <= DAP_UART_RX_BUFFER_SIZE) {
memcpy( rx_data, &UartRxBuf[index], rx_cnt);
} else {
num = DAP_UART_RX_BUFFER_SIZE - index;
memcpy( rx_data, &UartRxBuf[index], num);
memcpy(&rx_data[num], &UartRxBuf[0], rx_cnt - num);
}
UartRxIndexO += rx_cnt;
// TX Data
tx_cnt = ((uint32_t)(*(request+2) << 0) |
(uint32_t)(*(request+3) << 8));
tx_data = (request+4);
if (tx_cnt > (DAP_PACKET_SIZE - 5U)) {
tx_cnt = (DAP_PACKET_SIZE - 5U);
}
tx_num = UartTxIndexI - UartTxIndexO;
num = pUSART->GetTxCount();
if (UartTransmitActive != 0U) {
tx_num -= num;
}
if (tx_cnt > (DAP_UART_TX_BUFFER_SIZE - tx_num)) {
tx_cnt = (DAP_UART_TX_BUFFER_SIZE - tx_num);
}
index = UartTxIndexI & (DAP_UART_TX_BUFFER_SIZE - 1U);
if ((index + tx_cnt) <= DAP_UART_TX_BUFFER_SIZE) {
memcpy(&UartTxBuf[index], tx_data, tx_cnt);
} else {
num = DAP_UART_TX_BUFFER_SIZE - index;
memcpy(&UartTxBuf[index], tx_data, num);
memcpy(&UartTxBuf[0], &tx_data[num], tx_cnt - num);
}
UartTxIndexI += tx_cnt;
if (UartTransmitActive == 0U) {
UART_Transmit();
}
status = UART_Get_Status();
}
*response++ = status;
*response++ = (uint8_t)(tx_cnt >> 0);
*response++ = (uint8_t)(tx_cnt >> 8);
*response++ = (uint8_t)(rx_cnt >> 0);
*response = (uint8_t)(rx_cnt >> 8);
return (((4U + tx_cnt) << 16) | (5U + rx_cnt));
}
#endif /* DAP_UART */

View File

@ -0,0 +1,414 @@
/*
* Copyright (c) 2016, 2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __ARM_COMPUTE_NEMATH_H__
#define __ARM_COMPUTE_NEMATH_H__
#if defined(ARM_MATH_NEON)
/** Calculate floor of a vector.
*
* @param[in] val Input vector value in F32 format.
*
* @return The calculated floor vector.
*/
static inline float32x4_t vfloorq_f32(float32x4_t val);
/** Calculate inverse square root.
*
* @param[in] x Input value.
*
* @return The calculated inverse square root.
*/
static inline float32x2_t vinvsqrt_f32(float32x2_t x);
/** Calculate inverse square root.
*
* @param[in] x Input value.
*
* @return The calculated inverse square root.
*/
static inline float32x4_t vinvsqrtq_f32(float32x4_t x);
/** Calculate reciprocal.
*
* @param[in] x Input value.
*
* @return The calculated reciprocal.
*/
static inline float32x2_t vinv_f32(float32x2_t x);
/** Calculate reciprocal.
*
* @param[in] x Input value.
*
* @return The calculated reciprocal.
*/
static inline float32x4_t vinvq_f32(float32x4_t x);
/** Perform a 7th degree polynomial approximation using Estrin's method.
*
* @param[in] x Input vector value in F32 format.
* @param[in] coeffs Polynomial coefficients table. (array of flattened float32x4_t vectors)
*
* @return The calculated approximation.
*/
static inline float32x4_t vtaylor_polyq_f32(float32x4_t x, const float32_t *coeffs);
/** Calculate exponential
*
* @param[in] x Input vector value in F32 format.
*
* @return The calculated exponent.
*/
static inline float32x4_t vexpq_f32(float32x4_t x);
/** Calculate logarithm
*
* @param[in] x Input vector value in F32 format.
*
* @return The calculated logarithm.
*/
static inline float32x4_t vlogq_f32(float32x4_t x);
/** Calculate hyperbolic tangent.
*
* tanh(x) = (e^2x - 1)/(e^2x + 1)
*
* @note We clamp x to [-5,5] to avoid overflowing issues.
*
* @param[in] val Input vector value in F32 format.
*
* @return The calculated Hyperbolic Tangent.
*/
static inline float32x4_t vtanhq_f32(float32x4_t val);
/** Calculate n power of a number.
*
* pow(x,n) = e^(n*log(x))
*
* @param[in] val Input vector value in F32 format.
* @param[in] n Powers to raise the input to.
*
* @return The calculated power.
*/
static inline float32x4_t vpowq_f32(float32x4_t val, float32x4_t n);
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
/** Calculate hyperbolic tangent.
*
* tanh(x) = (e^2x - 1)/(e^2x + 1)
*
* @note We clamp x to [-5,5] to avoid overflowing issues.
*
* @param[in] val Input vector value in F32 format.
*
* @return The calculated Hyperbolic Tangent.
*/
static inline float16x8_t vtanhq_f16(float16x8_t val);
/** Calculate reciprocal.
*
* @param[in] x Input value.
*
* @return The calculated reciprocal.
*/
static inline float16x4_t vinv_f16(float16x4_t x);
/** Calculate reciprocal.
*
* @param[in] x Input value.
*
* @return The calculated reciprocal.
*/
static inline float16x8_t vinvq_f16(float16x8_t x);
/** Calculate inverse square root.
*
* @param[in] x Input value.
*
* @return The calculated inverse square root.
*/
static inline float16x4_t vinvsqrt_f16(float16x4_t x);
/** Calculate inverse square root.
*
* @param[in] x Input value.
*
* @return The calculated inverse square root.
*/
static inline float16x8_t vinvsqrtq_f16(float16x8_t x);
/** Calculate exponential
*
* @param[in] x Input vector value in F16 format.
*
* @return The calculated exponent.
*/
static inline float16x8_t vexpq_f16(float16x8_t x);
/** Calculate n power of a number.
*
* pow(x,n) = e^(n*log(x))
*
* @param[in] val Input vector value in F16 format.
* @param[in] n Powers to raise the input to.
*
* @return The calculated power.
*/
static inline float16x8_t vpowq_f16(float16x8_t val, float16x8_t n);
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
/** Exponent polynomial coefficients */
extern const float32_t exp_tab[4*8];
/** Logarithm polynomial coefficients */
extern const float32_t log_tab[4*8];
#ifndef DOXYGEN_SKIP_THIS
inline float32x4_t vfloorq_f32(float32x4_t val)
{
static const float32_t CONST_1[4] = {1.f,1.f,1.f,1.f};
const int32x4_t z = vcvtq_s32_f32(val);
const float32x4_t r = vcvtq_f32_s32(z);
return vbslq_f32(vcgtq_f32(r, val), vsubq_f32(r, vld1q_f32(CONST_1)), r);
}
inline float32x2_t vinvsqrt_f32(float32x2_t x)
{
float32x2_t sqrt_reciprocal = vrsqrte_f32(x);
sqrt_reciprocal = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
sqrt_reciprocal = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
return sqrt_reciprocal;
}
inline float32x4_t vinvsqrtq_f32(float32x4_t x)
{
float32x4_t sqrt_reciprocal = vrsqrteq_f32(x);
sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
return sqrt_reciprocal;
}
inline float32x2_t vinv_f32(float32x2_t x)
{
float32x2_t recip = vrecpe_f32(x);
recip = vmul_f32(vrecps_f32(x, recip), recip);
recip = vmul_f32(vrecps_f32(x, recip), recip);
return recip;
}
inline float32x4_t vinvq_f32(float32x4_t x)
{
float32x4_t recip = vrecpeq_f32(x);
recip = vmulq_f32(vrecpsq_f32(x, recip), recip);
recip = vmulq_f32(vrecpsq_f32(x, recip), recip);
return recip;
}
inline float32x4_t vtaylor_polyq_f32(float32x4_t x, const float32_t *coeffs)
{
float32x4_t A = vmlaq_f32(vld1q_f32(&coeffs[4*0]), vld1q_f32(&coeffs[4*4]), x);
float32x4_t B = vmlaq_f32(vld1q_f32(&coeffs[4*2]), vld1q_f32(&coeffs[4*6]), x);
float32x4_t C = vmlaq_f32(vld1q_f32(&coeffs[4*1]), vld1q_f32(&coeffs[4*5]), x);
float32x4_t D = vmlaq_f32(vld1q_f32(&coeffs[4*3]), vld1q_f32(&coeffs[4*7]), x);
float32x4_t x2 = vmulq_f32(x, x);
float32x4_t x4 = vmulq_f32(x2, x2);
float32x4_t res = vmlaq_f32(vmlaq_f32(A, B, x2), vmlaq_f32(C, D, x2), x4);
return res;
}
inline float32x4_t vexpq_f32(float32x4_t x)
{
static const float32_t CONST_LN2[4] = {0.6931471805f,0.6931471805f,0.6931471805f,0.6931471805f}; // ln(2)
static const float32_t CONST_INV_LN2[4] = {1.4426950408f,1.4426950408f,1.4426950408f,1.4426950408f}; // 1/ln(2)
static const float32_t CONST_0[4] = {0.f,0.f,0.f,0.f};
static const int32_t CONST_NEGATIVE_126[4] = {-126,-126,-126,-126};
// Perform range reduction [-log(2),log(2)]
int32x4_t m = vcvtq_s32_f32(vmulq_f32(x, vld1q_f32(CONST_INV_LN2)));
float32x4_t val = vmlsq_f32(x, vcvtq_f32_s32(m), vld1q_f32(CONST_LN2));
// Polynomial Approximation
float32x4_t poly = vtaylor_polyq_f32(val, exp_tab);
// Reconstruct
poly = vreinterpretq_f32_s32(vqaddq_s32(vreinterpretq_s32_f32(poly), vqshlq_n_s32(m, 23)));
poly = vbslq_f32(vcltq_s32(m, vld1q_s32(CONST_NEGATIVE_126)), vld1q_f32(CONST_0), poly);
return poly;
}
inline float32x4_t vlogq_f32(float32x4_t x)
{
static const int32_t CONST_127[4] = {127,127,127,127}; // 127
static const float32_t CONST_LN2[4] = {0.6931471805f,0.6931471805f,0.6931471805f,0.6931471805f}; // ln(2)
// Extract exponent
int32x4_t m = vsubq_s32(vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_f32(x), 23)), vld1q_s32(CONST_127));
float32x4_t val = vreinterpretq_f32_s32(vsubq_s32(vreinterpretq_s32_f32(x), vshlq_n_s32(m, 23)));
// Polynomial Approximation
float32x4_t poly = vtaylor_polyq_f32(val, log_tab);
// Reconstruct
poly = vmlaq_f32(poly, vcvtq_f32_s32(m), vld1q_f32(CONST_LN2));
return poly;
}
inline float32x4_t vtanhq_f32(float32x4_t val)
{
static const float32_t CONST_1[4] = {1.f,1.f,1.f,1.f};
static const float32_t CONST_2[4] = {2.f,2.f,2.f,2.f};
static const float32_t CONST_MIN_TANH[4] = {-10.f,-10.f,-10.f,-10.f};
static const float32_t CONST_MAX_TANH[4] = {10.f,10.f,10.f,10.f};
float32x4_t x = vminq_f32(vmaxq_f32(val, vld1q_f32(CONST_MIN_TANH)), vld1q_f32(CONST_MAX_TANH));
float32x4_t exp2x = vexpq_f32(vmulq_f32(vld1q_f32(CONST_2), x));
float32x4_t num = vsubq_f32(exp2x, vld1q_f32(CONST_1));
float32x4_t den = vaddq_f32(exp2x, vld1q_f32(CONST_1));
float32x4_t tanh = vmulq_f32(num, vinvq_f32(den));
return tanh;
}
inline float32x4_t vpowq_f32(float32x4_t val, float32x4_t n)
{
return vexpq_f32(vmulq_f32(n, vlogq_f32(val)));
}
#endif /* DOXYGEN_SKIP_THIS */
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
/** Exponent polynomial coefficients */
/** Logarithm polynomial coefficients */
#ifndef DOXYGEN_SKIP_THIS
inline float16x8_t vfloorq_f16(float16x8_t val)
{
static const float16_t CONST_1[8] = {1.f,1.f,1.f,1.f,1.f,1.f,1.f,1.f};
const int16x8_t z = vcvtq_s16_f16(val);
const float16x8_t r = vcvtq_f16_s16(z);
return vbslq_f16(vcgtq_f16(r, val), vsubq_f16(r, vld1q_f16(CONST_1)), r);
}
inline float16x4_t vinvsqrt_f16(float16x4_t x)
{
float16x4_t sqrt_reciprocal = vrsqrte_f16(x);
sqrt_reciprocal = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
sqrt_reciprocal = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
return sqrt_reciprocal;
}
inline float16x8_t vinvsqrtq_f16(float16x8_t x)
{
float16x8_t sqrt_reciprocal = vrsqrteq_f16(x);
sqrt_reciprocal = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
sqrt_reciprocal = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
return sqrt_reciprocal;
}
inline float16x4_t vinv_f16(float16x4_t x)
{
float16x4_t recip = vrecpe_f16(x);
recip = vmul_f16(vrecps_f16(x, recip), recip);
recip = vmul_f16(vrecps_f16(x, recip), recip);
return recip;
}
inline float16x8_t vinvq_f16(float16x8_t x)
{
float16x8_t recip = vrecpeq_f16(x);
recip = vmulq_f16(vrecpsq_f16(x, recip), recip);
recip = vmulq_f16(vrecpsq_f16(x, recip), recip);
return recip;
}
inline float16x8_t vtanhq_f16(float16x8_t val)
{
const float16_t CONST_1[8] = {1.f,1.f,1.f,1.f,1.f,1.f,1.f,1.f};
const float16_t CONST_2[8] = {2.f,2.f,2.f,2.f,2.f,2.f,2.f,2.f};
const float16_t CONST_MIN_TANH[8] = {-10.f,-10.f,-10.f,-10.f,-10.f,-10.f,-10.f,-10.f};
const float16_t CONST_MAX_TANH[8] = {10.f,10.f,10.f,10.f,10.f,10.f,10.f,10.f};
const float16x8_t x = vminq_f16(vmaxq_f16(val, vld1q_f16(CONST_MIN_TANH)), vld1q_f16(CONST_MAX_TANH));
const float16x8_t exp2x = vexpq_f16(vmulq_f16(vld1q_f16(CONST_2), x));
const float16x8_t num = vsubq_f16(exp2x, vld1q_f16(CONST_1));
const float16x8_t den = vaddq_f16(exp2x, vld1q_f16(CONST_1));
const float16x8_t tanh = vmulq_f16(num, vinvq_f16(den));
return tanh;
}
inline float16x8_t vtaylor_polyq_f16(float16x8_t x, const float16_t *coeffs)
{
const float16x8_t A = vaddq_f16(vld1q_f16(&coeffs[8*0]), vmulq_f16(vld1q_f16(&coeffs[8*4]), x));
const float16x8_t B = vaddq_f16(vld1q_f16(&coeffs[8*2]), vmulq_f16(vld1q_f16(&coeffs[8*6]), x));
const float16x8_t C = vaddq_f16(vld1q_f16(&coeffs[8*1]), vmulq_f16(vld1q_f16(&coeffs[8*5]), x));
const float16x8_t D = vaddq_f16(vld1q_f16(&coeffs[8*3]), vmulq_f16(vld1q_f16(&coeffs[8*7]), x));
const float16x8_t x2 = vmulq_f16(x, x);
const float16x8_t x4 = vmulq_f16(x2, x2);
const float16x8_t res = vaddq_f16(vaddq_f16(A, vmulq_f16(B, x2)), vmulq_f16(vaddq_f16(C, vmulq_f16(D, x2)), x4));
return res;
}
inline float16x8_t vexpq_f16(float16x8_t x)
{
// TODO (COMPMID-1535) : Revisit FP16 approximations
const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x));
const float32x4_t x_low = vcvt_f32_f16(vget_low_f16(x));
const float16x8_t res = vcvt_high_f16_f32(vcvt_f16_f32(vexpq_f32(x_low)), vexpq_f32(x_high));
return res;
}
inline float16x8_t vlogq_f16(float16x8_t x)
{
// TODO (COMPMID-1535) : Revisit FP16 approximations
const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x));
const float32x4_t x_low = vcvt_f32_f16(vget_low_f16(x));
const float16x8_t res = vcvt_high_f16_f32(vcvt_f16_f32(vlogq_f32(x_low)), vlogq_f32(x_high));
return res;
}
inline float16x8_t vpowq_f16(float16x8_t val, float16x8_t n)
{
// TODO (giaiod01) - COMPMID-1535
float32x4_t n0_f32 = vcvt_f32_f16(vget_low_f16(n));
float32x4_t n1_f32 = vcvt_f32_f16(vget_high_f16(n));
float32x4_t val0_f32 = vcvt_f32_f16(vget_low_f16(val));
float32x4_t val1_f32 = vcvt_f32_f16(vget_high_f16(val));
float32x4_t res0_f32 = vexpq_f32(vmulq_f32(n0_f32, vlogq_f32(val0_f32)));
float32x4_t res1_f32 = vexpq_f32(vmulq_f32(n1_f32, vlogq_f32(val1_f32)));
return vcombine_f16(vcvt_f16_f32(res0_f32), vcvt_f16_f32(res1_f32));
}
#endif /* DOXYGEN_SKIP_THIS */
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
#endif
#endif /* __ARM_COMPUTE_NEMATH_H__ */

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2017-2019 ARM Software
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,55 @@
/*
* Copyright (c) 2016, 2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_math.h"
#include "NEMath.h"
#if defined(ARM_MATH_NEON)
/** Exponent polynomial coefficients */
const float32_t exp_tab[4*8] =
{
1.f,1.f,1.f,1.f,
0.0416598916054f,0.0416598916054f,0.0416598916054f,0.0416598916054f,
0.500000596046f,0.500000596046f,0.500000596046f,0.500000596046f,
0.0014122662833f,0.0014122662833f,0.0014122662833f,0.0014122662833f,
1.00000011921f,1.00000011921f,1.00000011921f,1.00000011921f,
0.00833693705499f,0.00833693705499f,0.00833693705499f,0.00833693705499f,
0.166665703058f,0.166665703058f,0.166665703058f,0.166665703058f,
0.000195780929062f,0.000195780929062f,0.000195780929062f,0.000195780929062f
};
/** Logarithm polynomial coefficients */
const float32_t log_tab[4*8] =
{
-2.29561495781f,-2.29561495781f,-2.29561495781f,-2.29561495781f,
-2.47071170807f,-2.47071170807f,-2.47071170807f,-2.47071170807f,
-5.68692588806f,-5.68692588806f,-5.68692588806f,-5.68692588806f,
-0.165253549814f,-0.165253549814f,-0.165253549814f,-0.165253549814f,
5.17591238022f,5.17591238022f,5.17591238022f,5.17591238022f,
0.844007015228f,0.844007015228f,0.844007015228f,0.844007015228f,
4.58445882797f,4.58445882797f,4.58445882797f,4.58445882797f,
0.0141278216615f,0.0141278216615f,0.0141278216615f,0.0141278216615f
};
#endif

View File

@ -0,0 +1,8 @@
# Parameters:
# instance.parameter=value #(type, mode) default = 'def value' : description : [min..max]
#------------------------------------------------------------------------------
armcortexm0ct.semihosting-enable=0 # (bool , init-time) default = '1' : Enable semihosting SVC traps. Applications that do not use semihosting must set this parameter to false.
armcortexm0ct.cpi_div=1 # (int , run-time ) default = '0x1' : divider for calculating CPI (Cycles Per Instruction)
armcortexm0ct.cpi_mul=1 # (int , run-time ) default = '0x1' : multiplier for calculating CPI (Cycles Per Instruction)
armcortexm0ct.min_sync_level=3 # (int , run-time ) default = '0x0' : force minimum syncLevel (0=off=default,1=syncState,2=postInsnIO,3=postInsnAll)
#------------------------------------------------------------------------------

View File

@ -0,0 +1,8 @@
# Parameters:
# instance.parameter=value #(type, mode) default = 'def value' : description : [min..max]
#------------------------------------------------------------------------------
armcortexm3ct.semihosting-enable=0 # (bool , init-time) default = '1' : Enable semihosting SVC traps. Applications that do not use semihosting must set this parameter to false.
armcortexm3ct.cpi_div=1 # (int , run-time ) default = '0x1' : divider for calculating CPI (Cycles Per Instruction)
armcortexm3ct.cpi_mul=1 # (int , run-time ) default = '0x1' : multiplier for calculating CPI (Cycles Per Instruction)
armcortexm3ct.min_sync_level=3 # (int , run-time ) default = '0x0' : force minimum syncLevel (0=off=default,1=syncState,2=postInsnIO,3=postInsnAll)
#------------------------------------------------------------------------------

View File

@ -0,0 +1,9 @@
# Parameters:
# instance.parameter=value #(type, mode) default = 'def value' : description : [min..max]
#------------------------------------------------------------------------------
armcortexm4ct.semihosting-enable=0 # (bool , init-time) default = '1' : Enable semihosting SVC traps. Applications that do not use semihosting must set this parameter to false.
armcortexm4ct.cpi_div=1 # (int , run-time ) default = '0x1' : divider for calculating CPI (Cycles Per Instruction)
armcortexm4ct.cpi_mul=1 # (int , run-time ) default = '0x1' : multiplier for calculating CPI (Cycles Per Instruction)
armcortexm4ct.min_sync_level=3 # (int , run-time ) default = '0x0' : force minimum syncLevel (0=off=default,1=syncState,2=postInsnIO,3=postInsnAll)
armcortexm4ct.vfp-present=1 # (bool , init-time) default = '1' : Set whether the model has VFP support
#------------------------------------------------------------------------------

View File

@ -0,0 +1,25 @@
# Parameters:
# instance.parameter=value #(type, mode) default = 'def value' : description : [min..max]
#------------------------------------------------------------------------------
cpu0.semihosting-enable=0 # (bool , init-time) default = '1' : Enable semihosting SVC traps. Applications that do not use semihosting must set this parameter to false.
cpu0.cpi_div=1 # (int , run-time ) default = '0x1' : divider for calculating CPI (Cycles Per Instruction)
cpu0.cpi_mul=1 # (int , run-time ) default = '0x1' : multiplier for calculating CPI (Cycles Per Instruction)
cpu0.min_sync_level=3 # (int , run-time ) default = '0x0' : force minimum syncLevel (0=off=default,1=syncState,2=postInsnIO,3=postInsnAll)
cpu0.FPU=1 # (bool , init-time) default = '1' : Set whether the model has VFP support
cpu0.MVE=2 # (int , init-time) default = '0x1' : Set whether the model has MVE support. If FPU = 0: 0=MVE not included, 1=Integer subset of MVE included. If FPU = 1: 0=MVE not included, 1=Integer subset of MVE included, 2=Integer and half and single precision floating point MVE included
cpu0.SAU=0 # (int , init-time) default = '0x8' : Number of SAU regions (0 => no SAU)
cpu0.SECEXT=0 # (bool , init-time) default = '1' : Whether the ARMv8-M Security Extensions are included
cpu0.INITSVTOR=0 # (int , init-time) default = '0x10000000' : Secure vector-table offset at reset
cpu0.INITNSVTOR=0 # (int , init-time) default = '0x0' : Non-Secure vector-table offset at reset
#
cpu1.semihosting-enable=0 # (bool , init-time) default = '1' : Enable semihosting SVC traps. Applications that do not use semihosting must set this parameter to false.
cpu1.cpi_div=1 # (int , run-time ) default = '0x1' : divider for calculating CPI (Cycles Per Instruction)
cpu1.cpi_mul=1 # (int , run-time ) default = '0x1' : multiplier for calculating CPI (Cycles Per Instruction)
cpu1.min_sync_level=3 # (int , run-time ) default = '0x0' : force minimum syncLevel (0=off=default,1=syncState,2=postInsnIO,3=postInsnAll)
cpu1.FPU=1 # (bool , init-time) default = '1' : Set whether the model has VFP support
cpu1.MVE=2 # (int , init-time) default = '0x1' : Set whether the model has MVE support. If FPU = 0: 0=MVE not included, 1=Integer subset of MVE included. If FPU = 1: 0=MVE not included, 1=Integer subset of MVE included, 2=Integer and half and single precision floating point MVE included
cpu1.SAU=0 # (int , init-time) default = '0x8' : Number of SAU regions (0 => no SAU)
cpu1.SECEXT=0 # (bool , init-time) default = '1' : Whether the ARMv8-M Security Extensions are included
cpu1.INITSVTOR=0 # (int , init-time) default = '0x10000000' : Secure vector-table offset at reset
cpu1.INITNSVTOR=0 # (int , init-time) default = '0x0' : Non-Secure vector-table offset at reset
#------------------------------------------------------------------------------

View File

@ -0,0 +1,9 @@
# Parameters:
# instance.parameter=value #(type, mode) default = 'def value' : description : [min..max]
#------------------------------------------------------------------------------
armcortexm7ct.semihosting-enable=0 # (bool , init-time) default = '1' : Enable semihosting SVC traps. Applications that do not use semihosting must set this parameter to false.
armcortexm7ct.cpi_div=1 # (int , run-time ) default = '0x1' : divider for calculating CPI (Cycles Per Instruction)
armcortexm7ct.cpi_mul=1 # (int , run-time ) default = '0x1' : multiplier for calculating CPI (Cycles Per Instruction)
armcortexm7ct.min_sync_level=3 # (int , run-time ) default = '0x0' : force minimum syncLevel (0=off=default,1=syncState,2=postInsnIO,3=postInsnAll)
armcortexm7ct.vfp-present=1 # (bool , init-time) default = '1' : Set whether the model has VFP support
#------------------------------------------------------------------------------

View File

@ -0,0 +1,10 @@
CMSIS DSP_Lib example arm_class_marks_example
The example is available for different targets:
Cortex-M0
Cortex-M3
Cortex-M4 with FPU
Cortex-M7 with single precision FPU
Cortex-M55 with double precision FPU, Integer + Floating Point MVE
The example is configured for Models Debugger

View File

@ -0,0 +1,45 @@
cmake_minimum_required (VERSION 3.14)
project (arm_bayes_example VERSION 0.1)
# Needed to include the configBoot module
# Define the path to CMSIS-DSP (ROOT is defined on command line when using cmake)
set(ROOT ${CMAKE_CURRENT_SOURCE_DIR}/../../../../..)
set(DSP ${ROOT}/CMSIS/DSP)
# Add DSP folder to module path
list(APPEND CMAKE_MODULE_PATH ${DSP})
###################################
#
# LIBRARIES
#
###################################
###########
#
# CMSIS DSP
#
add_subdirectory(../../../Source bin_dsp)
###################################
#
# TEST APPLICATION
#
###################################
add_executable(arm_bayes_example)
include(config)
configApp(arm_bayes_example ${ROOT})
target_sources(arm_bayes_example PRIVATE arm_bayes_example_f32.c)
### Sources and libs
target_link_libraries(arm_bayes_example PRIVATE CMSISDSP)

View File

@ -0,0 +1,131 @@
/******************************************************************************
* @file startup_ARMCM0.c
* @brief CMSIS-Core(M) Device Startup File for a Cortex-M0 Device
* @version V2.0.2
* @date 15. November 2019
******************************************************************************/
/*
* Copyright (c) 2009-2019 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ARMCM0.h"
/*----------------------------------------------------------------------------
External References
*----------------------------------------------------------------------------*/
extern uint32_t __INITIAL_SP;
extern __NO_RETURN void __PROGRAM_START(void);
/*----------------------------------------------------------------------------
Internal References
*----------------------------------------------------------------------------*/
void __NO_RETURN Default_Handler(void);
void __NO_RETURN Reset_Handler (void);
/*----------------------------------------------------------------------------
Exception / Interrupt Handler
*----------------------------------------------------------------------------*/
/* Exceptions */
void NMI_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void HardFault_Handler (void) __attribute__ ((weak));
void SVC_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void PendSV_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void SysTick_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void Interrupt0_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void Interrupt1_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void Interrupt2_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void Interrupt3_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void Interrupt4_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void Interrupt5_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void Interrupt6_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void Interrupt7_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void Interrupt8_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void Interrupt9_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
/*----------------------------------------------------------------------------
Exception / Interrupt Vector table
*----------------------------------------------------------------------------*/
#if defined ( __GNUC__ )
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
extern const VECTOR_TABLE_Type __VECTOR_TABLE[48];
const VECTOR_TABLE_Type __VECTOR_TABLE[48] __VECTOR_TABLE_ATTRIBUTE = {
(VECTOR_TABLE_Type)(&__INITIAL_SP), /* Initial Stack Pointer */
Reset_Handler, /* Reset Handler */
NMI_Handler, /* -14 NMI Handler */
HardFault_Handler, /* -13 Hard Fault Handler */
0, /* Reserved */
0, /* Reserved */
0, /* Reserved */
0, /* Reserved */
0, /* Reserved */
0, /* Reserved */
0, /* Reserved */
SVC_Handler, /* -5 SVCall Handler */
0, /* Reserved */
0, /* Reserved */
PendSV_Handler, /* -2 PendSV Handler */
SysTick_Handler, /* -1 SysTick Handler */
/* Interrupts */
Interrupt0_Handler, /* 0 Interrupt 0 */
Interrupt1_Handler, /* 1 Interrupt 1 */
Interrupt2_Handler, /* 2 Interrupt 2 */
Interrupt3_Handler, /* 3 Interrupt 3 */
Interrupt4_Handler, /* 4 Interrupt 4 */
Interrupt5_Handler, /* 5 Interrupt 5 */
Interrupt6_Handler, /* 6 Interrupt 6 */
Interrupt7_Handler, /* 7 Interrupt 7 */
Interrupt8_Handler, /* 8 Interrupt 8 */
Interrupt9_Handler /* 9 Interrupt 9 */
/* Interrupts 10..31 are left out */
};
#if defined ( __GNUC__ )
#pragma GCC diagnostic pop
#endif
/*----------------------------------------------------------------------------
Reset Handler called on controller reset
*----------------------------------------------------------------------------*/
__NO_RETURN void Reset_Handler(void)
{
SystemInit(); /* CMSIS System Initialization */
__PROGRAM_START(); /* Enter PreMain (C library entry point) */
}
/*----------------------------------------------------------------------------
Hard Fault Handler
*----------------------------------------------------------------------------*/
void HardFault_Handler(void)
{
while(1);
}
/*----------------------------------------------------------------------------
Default Handler for Exceptions / Interrupts
*----------------------------------------------------------------------------*/
void Default_Handler(void)
{
while(1);
}

Some files were not shown because too many files have changed in this diff Show More