/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2024 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "cmsis_os.h" #include "dma.h" #include "lwip.h" #include "spi.h" #include "tim.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "stdio.h" #include "lwip/api.h" #include "lwip/tcp.h" #include "ad7124.h" #include "ht1200m.h" #include "uart_lcd.h" #include "user_flash.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void MX_FREERTOS_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ uart_t lcd_uart4 = {0}; uart_t ble1_uart6 = {0}; uart_t ble2_uart3 = {0}; uart_t hart2_uart2 = {0}; uart_t hart1_uart5 = {0}; uart_t usb_uart1 = {0}; float current_buff[2] = {0, 0}; uint8_t tcp_echo_flags_hart1 = 0; uint8_t tcp_echo_flags_hart2 = 0; uint8_t tcp_echo_flags_ble1 = 0; uint8_t tcp_echo_flags_ble2 = 0; uint8_t tcp_echo_flags_control = 0; uint8_t send_data_flag_cmd = 0; // TEST // uint8_t data_flag = 0; // uint32_t receive_times1 = 0; // uint32_t receive_times2 = 0; // ENDTEST extern struct netif gnetif; extern ip4_addr_t ipaddr; /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_TIM3_Init(); MX_SPI1_Init(); MX_UART4_Init(); MX_TIM2_Init(); MX_UART5_Init(); MX_USART2_UART_Init(); MX_USART3_UART_Init(); MX_TIM1_Init(); MX_USART1_UART_Init(); MX_TIM8_Init(); /* USER CODE BEGIN 2 */ /*DMA INIT*/ // start HAL_UARTEx_ReceiveToIdle_DMA(&huart4, lcd_uart4.rx_data_temp, ARRAY_LEN(lcd_uart4.rx_data_temp)); #if (BLE2_USART6 == 1) HAL_UARTEx_ReceiveToIdle_DMA(&huart6, ble1_uart6.rx_data_temp, ARRAY_LEN(ble1_uart6.rx_data_temp)); #endif HAL_UARTEx_ReceiveToIdle_DMA(&huart3, ble2_uart3.rx_data_temp, ARRAY_LEN(ble2_uart3.rx_data_temp)); HAL_UARTEx_ReceiveToIdle_DMA(&huart5, hart1_uart5.rx_data_temp, ARRAY_LEN(hart1_uart5.rx_data_temp)); HAL_UARTEx_ReceiveToIdle_DMA(&huart2, hart2_uart2.rx_data_temp, ARRAY_LEN(hart2_uart2.rx_data_temp)); HAL_UARTEx_ReceiveToIdle_DMA(&huart1, usb_uart1.rx_data_temp, ARRAY_LEN(usb_uart1.rx_data_temp)); // end hart_ht1200m_reset(); // HT1200M reset HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1); // HART CLK HAL_TIM_Encoder_Start(&htim1, TIM_CHANNEL_ALL); // rotary encoder #if (ENCODE_TIM8 == 1) HAL_TIM_Encoder_Start(&htim8, TIM_CHANNEL_ALL); #endif /* USER CODE END 2 */ /* Call init function for freertos objects (in freertos.c) */ MX_FREERTOS_Init(); /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 10; RCC_OscInitStruct.PLL.PLLN = 200; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 4; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV4; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) { if (huart == &huart5) { __HAL_UNLOCK(huart); if (__HAL_UART_GET_FLAG(huart, UART_FLAG_NE)) { __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_NE); // 清除错误标志 } HAL_UARTEx_ReceiveToIdle_DMA(&huart5, hart1_uart5.rx_data_temp, ARRAY_LEN(hart1_uart5.rx_data_temp)); } if (huart == &huart2) { __HAL_UNLOCK(huart); if (__HAL_UART_GET_FLAG(huart, UART_FLAG_NE)) { __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_NE); // 清除错误标志 } HAL_UARTEx_ReceiveToIdle_DMA(&huart2, hart2_uart2.rx_data_temp, ARRAY_LEN(hart2_uart2.rx_data_temp)); } } void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size) { if (huart == &huart1) { __HAL_UNLOCK(huart); usb_uart1.rx_num = Size; memset(usb_uart1.rx_data, 0, ARRAY_LEN(usb_uart1.rx_data)); memcpy(usb_uart1.rx_data, usb_uart1.rx_data_temp, Size); HAL_UARTEx_ReceiveToIdle_DMA(&huart1, usb_uart1.rx_data_temp, ARRAY_LEN(usb_uart1.rx_data_temp)); // dma_usart_send(&huart4, usb_uart1.rx_data_temp, usb_uart1.rx_num); // IP address assignment IP4_ADDR(&ipaddr, usb_uart1.rx_data_temp[0], usb_uart1.rx_data_temp[1], usb_uart1.rx_data_temp[2], usb_uart1.rx_data_temp[3]); gnetif.ip_addr = ipaddr; if (flash_write_data(FLASH_USER_START_ADDR, usb_uart1.rx_data_temp, Size) == HAL_OK) // 写入flash戝功,更新ip地址显示 { uart_lcd_draw_ipaddr(); } } if (huart == &huart4) { __HAL_UNLOCK(huart); lcd_uart4.rx_num = Size; memset(lcd_uart4.rx_data, 0, ARRAY_LEN(lcd_uart4.rx_data)); memcpy(lcd_uart4.rx_data, lcd_uart4.rx_data_temp, Size); HAL_UARTEx_ReceiveToIdle_DMA(&huart4, lcd_uart4.rx_data_temp, ARRAY_LEN(lcd_uart4.rx_data_temp)); } #if (BLE2_USART6 == 1) if (huart == &huart6) { __HAL_UNLOCK(huart); ble1_uart6.rx_num = Size; memset(ble1_uart6.rx_data, 0, ARRAY_LEN(ble1_uart6.rx_data)); memcpy(ble1_uart6.rx_data, ble1_uart6.rx_data_temp, Size); if (tcp_echo_flags_ble1 == 1) { user_send_data_ble1(ble1_uart6.rx_data, Size); } HAL_UARTEx_ReceiveToIdle_DMA(&huart6, ble1_uart6.rx_data_temp, ARRAY_LEN(ble1_uart6.rx_data_temp)); } #endif if (huart == &huart3) { __HAL_UNLOCK(huart); ble2_uart3.rx_num = Size; memset(ble2_uart3.rx_data, 0, ARRAY_LEN(ble2_uart3.rx_data)); memcpy(ble2_uart3.rx_data, ble2_uart3.rx_data_temp, Size); if (tcp_echo_flags_ble2 == 1) { user_send_data_ble2(ble2_uart3.rx_data, Size); } HAL_UARTEx_ReceiveToIdle_DMA(&huart3, ble2_uart3.rx_data_temp, ARRAY_LEN(ble2_uart3.rx_data_temp)); } if (huart == &huart5) { __HAL_UNLOCK(huart); hart1_uart5.rx_num = Size; memset(hart1_uart5.rx_data, 0, ARRAY_LEN(hart1_uart5.rx_data)); memcpy(hart1_uart5.rx_data, hart1_uart5.rx_data_temp, Size); if (tcp_echo_flags_hart1 == 1) { user_send_data_hart1(hart1_uart5.rx_data, Size); } HAL_UARTEx_ReceiveToIdle_DMA(&huart5, hart1_uart5.rx_data_temp, ARRAY_LEN(hart1_uart5.rx_data_temp)); memset(hart1_uart5.rx_data_temp, 0, ARRAY_LEN(hart1_uart5.rx_data_temp)); } if (huart == &huart2) { __HAL_UNLOCK(huart); hart2_uart2.rx_num = Size; memset(hart2_uart2.rx_data, 0, ARRAY_LEN(hart2_uart2.rx_data)); memcpy(hart2_uart2.rx_data, hart2_uart2.rx_data_temp, Size); if (tcp_echo_flags_hart2 == 1) { user_send_data_hart2(hart2_uart2.rx_data, Size); } HAL_UARTEx_ReceiveToIdle_DMA(&huart2, hart2_uart2.rx_data_temp, ARRAY_LEN(hart2_uart2.rx_data_temp)); } } void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) { if (huart == &huart5) { HART1_RTS_RECEIVE; } if (huart == &huart2) { HART2_RTS_RECEIVE; } } void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { if (GPIO_Pin == EC11_KEY_Pin) { if (ec11_data.confirm_key_flag == 0) { ec11_data.confirm_key_flag = 1; } else if (ec11_data.confirm_key_flag == 1) { ec11_data.confirm_key_flag = 2; } else if (ec11_data.confirm_key_flag == 2) { ec11_data.confirm_key_flag = 3; } } if (GPIO_Pin == HART2_OCD_Pin) { HAL_GPIO_TogglePin(LED2_R_GPIO_Port, LED2_R_Pin); } if (GPIO_Pin == HART1_OCD_Pin) { HAL_GPIO_TogglePin(LED2_Y_GPIO_Port, LED2_Y_Pin); } } /* USER CODE END 4 */ /** * @brief Period elapsed callback in non blocking mode * @note This function is called when TIM4 interrupt took place, inside * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment * a global variable "uwTick" used as application time base. * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* USER CODE BEGIN Callback 0 */ /* USER CODE END Callback 0 */ if (htim->Instance == TIM4) { HAL_IncTick(); } /* USER CODE BEGIN Callback 1 */ /* USER CODE END Callback 1 */ } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ // __disable_irq(); // while (1) // { // } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */