signal_generator/Core/Src/main.c

368 lines
11 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
#include "dma.h"
#include "lwip.h"
#include "spi.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdio.h"
#include "lwip/api.h"
#include "lwip/tcp.h"
#include "ad7124.h"
#include "ht1200m.h"
#include "uart_lcd.h"
#include "user_flash.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void MX_FREERTOS_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uart_t lcd_uart4 = {0};
uart_t ble1_uart6 = {0};
uart_t ble2_uart3 = {0};
uart_t hart2_uart2 = {0};
uart_t hart1_uart5 = {0};
uart_t usb_uart1 = {0};
float current_buff[2] = {0, 0};
uint8_t tcp_echo_flags_hart1 = 0;
uint8_t tcp_echo_flags_hart2 = 0;
uint8_t tcp_echo_flags_ble1 = 0;
uint8_t tcp_echo_flags_ble2 = 0;
uint8_t tcp_echo_flags_control = 0;
uint8_t send_data_flag_cmd = 0;
extern struct netif gnetif;
extern ip4_addr_t ipaddr;
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_TIM3_Init();
MX_SPI1_Init();
MX_USART6_UART_Init();
MX_UART4_Init();
MX_TIM2_Init();
MX_UART5_Init();
MX_USART2_UART_Init();
MX_USART3_UART_Init();
MX_TIM1_Init();
MX_USART1_UART_Init();
/* USER CODE BEGIN 2 */
/*Configure serial port DMA reception*/
// start
HAL_UARTEx_ReceiveToIdle_DMA(&huart4, lcd_uart4.rx_data_temp, ARRAY_LEN(lcd_uart4.rx_data_temp));
// HAL_UARTEx_ReceiveToIdle_DMA(&huart6, ble1_uart6.rx_data_temp, ARRAY_LEN(ble1_uart6.rx_data_temp));
// HAL_UARTEx_ReceiveToIdle_DMA(&huart3, ble2_uart3.rx_data_temp, ARRAY_LEN(ble2_uart3.rx_data_temp));
// HAL_UARTEx_ReceiveToIdle_DMA(&huart5, hart1_uart5.rx_data_temp, ARRAY_LEN(hart1_uart5.rx_data_temp));
// HAL_UARTEx_ReceiveToIdle_DMA(&huart2, hart2_uart2.rx_data_temp, ARRAY_LEN(hart2_uart2.rx_data_temp));
// HAL_UARTEx_ReceiveToIdle_DMA(&huart1, usb_uart1.rx_data_temp, ARRAY_LEN(usb_uart1.rx_data_temp));
// end
hart_ht1200m_reset(); // Reset HT1200M
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1); // PWM output, used to drive the HT1200M module
HAL_TIM_Encoder_Start(&htim1, TIM_CHANNEL_ALL); // rotary encoder
/* USER CODE END 2 */
/* Call init function for freertos objects (in freertos.c) */
MX_FREERTOS_Init();
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 10;
RCC_OscInitStruct.PLL.PLLN = 200;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV4;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size)
{
if (huart == &huart1)
{
__HAL_UNLOCK(huart);
usb_uart1.rx_num = Size;
memset(usb_uart1.rx_data, 0, ARRAY_LEN(usb_uart1.rx_data));
memcpy(usb_uart1.rx_data, usb_uart1.rx_data_temp, Size);
HAL_UARTEx_ReceiveToIdle_DMA(&huart1, usb_uart1.rx_data_temp, ARRAY_LEN(usb_uart1.rx_data_temp));
// UART receives IP address
IP4_ADDR(&ipaddr, usb_uart1.rx_data_temp[0], usb_uart1.rx_data_temp[1], usb_uart1.rx_data_temp[2], usb_uart1.rx_data_temp[3]);
gnetif.ip_addr = ipaddr;
if (flash_write_data(FLASH_USER_START_ADDR, usb_uart1.rx_data_temp, Size) == HAL_OK)
{
}
}
if (huart == &huart4)
{
__HAL_UNLOCK(huart);
lcd_uart4.rx_num = Size;
memset(lcd_uart4.rx_data, 0, ARRAY_LEN(lcd_uart4.rx_data));
memcpy(lcd_uart4.rx_data, lcd_uart4.rx_data_temp, Size);
HAL_UARTEx_ReceiveToIdle_DMA(&huart4, lcd_uart4.rx_data_temp, ARRAY_LEN(lcd_uart4.rx_data_temp));
}
if (huart == &huart6)
{
__HAL_UNLOCK(huart);
ble1_uart6.rx_num = Size;
memset(ble1_uart6.rx_data, 0, ARRAY_LEN(ble1_uart6.rx_data));
memcpy(ble1_uart6.rx_data, ble1_uart6.rx_data_temp, Size);
if (tcp_echo_flags_ble1 == 1)
{
user_send_data_ble1(ble1_uart6.rx_data, Size);
}
HAL_UARTEx_ReceiveToIdle_DMA(&huart6, ble1_uart6.rx_data_temp, ARRAY_LEN(ble1_uart6.rx_data_temp));
}
if (huart == &huart3)
{
__HAL_UNLOCK(huart);
ble2_uart3.rx_num = Size;
memset(ble2_uart3.rx_data, 0, ARRAY_LEN(ble2_uart3.rx_data));
memcpy(ble2_uart3.rx_data, ble2_uart3.rx_data_temp, Size);
if (tcp_echo_flags_ble2 == 1)
{
user_send_data_ble2(ble2_uart3.rx_data, Size);
}
HAL_UARTEx_ReceiveToIdle_DMA(&huart3, ble2_uart3.rx_data_temp, ARRAY_LEN(ble2_uart3.rx_data_temp));
}
if (huart == &huart5)
{
__HAL_UNLOCK(huart);
hart1_uart5.rx_num = Size;
memset(hart1_uart5.rx_data, 0, ARRAY_LEN(hart1_uart5.rx_data));
memcpy(hart1_uart5.rx_data, hart1_uart5.rx_data_temp, Size);
if (tcp_echo_flags_hart1 == 1)
{
user_send_data_hart1(hart1_uart5.rx_data, Size);
}
HAL_UARTEx_ReceiveToIdle_DMA(&huart5, hart1_uart5.rx_data_temp, ARRAY_LEN(hart1_uart5.rx_data_temp));
}
if (huart == &huart2)
{
__HAL_UNLOCK(huart);
hart2_uart2.rx_num = Size;
memset(hart2_uart2.rx_data, 0, ARRAY_LEN(hart2_uart2.rx_data));
memcpy(hart2_uart2.rx_data, hart2_uart2.rx_data_temp, Size);
if (tcp_echo_flags_hart2 == 1)
{
user_send_data_hart2(hart2_uart2.rx_data, Size);
}
HAL_UARTEx_ReceiveToIdle_DMA(&huart2, hart2_uart2.rx_data_temp, ARRAY_LEN(hart2_uart2.rx_data_temp));
}
}
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
{
if (huart == &huart5)
{
HART1_RTS_RECEIVE;
}
if (huart == &huart2)
{
HART2_RTS_RECEIVE;
}
if (huart == &huart4)
{
uart_lcd_state.lcd_flag = 0; // Reset the LCD flag after sending data
}
}
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
if (GPIO_Pin == EC11_KEY_Pin)
{
if (ec11_data.confirm_key_flag == 0)
{
ec11_data.confirm_key_flag = 1;
}
else if (ec11_data.confirm_key_flag == 1)
{
ec11_data.confirm_key_flag = 2;
}
else if (ec11_data.confirm_key_flag == 2)
{
ec11_data.confirm_key_flag = 3;
}
}
}
/* USER CODE END 4 */
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM4 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM4)
{
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
// __disable_irq();
// while (1)
// {
// }
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */