Compare commits

..

8 Commits
test ... master

Author SHA1 Message Date
草团君 c5ea18f629 修改压力计算公式 2024-04-22 17:04:53 +08:00
草团君 290fe0f827 修改ADC采样时间 2024-04-22 11:51:26 +08:00
草团君 922d376bcc 上位机联调正常 2024-04-22 11:18:07 +08:00
草团君 2514a1efe7 协议测试通过 2024-04-19 16:34:45 +08:00
草团君 542ff3208c 增加传感器 2024-04-18 11:10:45 +08:00
草团君 5870cee759 协议编写完成,待测试 2024-04-17 17:19:47 +08:00
草团君 4c3cb563ee 备份,未完成 2024-04-16 17:06:22 +08:00
草团君 fba5f0720c 通讯待测试 2024-04-15 14:42:11 +08:00
21 changed files with 2086 additions and 857 deletions

View File

@ -4,7 +4,10 @@
"board.h": "c", "board.h": "c",
"motor.h": "c", "motor.h": "c",
"main.h": "c", "main.h": "c",
"app.h": "c" "app.h": "c",
"type_traits": "c",
"adcs.h": "c",
"uarts.h": "c"
}, },
"C_Cpp.errorSquiggles": "disabled" "C_Cpp.errorSquiggles": "disabled"
} }

View File

@ -44,10 +44,17 @@ void MX_ADC_Init(void)
LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOA); LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOA);
LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOB); LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOB);
/**ADC GPIO Configuration /**ADC GPIO Configuration
PC0 ------> ADC_IN10
PC3 ------> ADC_IN13 PC3 ------> ADC_IN13
PA7 ------> ADC_IN7 PA7 ------> ADC_IN7
PB0 ------> ADC_IN8 PB0 ------> ADC_IN8
PB1 ------> ADC_IN9
*/ */
GPIO_InitStruct.Pin = LL_GPIO_PIN_0;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(GPIOC, &GPIO_InitStruct);
GPIO_InitStruct.Pin = MG_ADC_IN13_Pin; GPIO_InitStruct.Pin = MG_ADC_IN13_Pin;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG; GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO; GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
@ -63,6 +70,11 @@ void MX_ADC_Init(void)
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO; GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(GPIOB, &GPIO_InitStruct); LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
GPIO_InitStruct.Pin = LL_GPIO_PIN_1;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* ADC DMA Init */ /* ADC DMA Init */
/* ADC Init */ /* ADC Init */
@ -94,6 +106,14 @@ void MX_ADC_Init(void)
*/ */
LL_ADC_REG_SetSequencerChAdd(ADC1, LL_ADC_CHANNEL_8); LL_ADC_REG_SetSequencerChAdd(ADC1, LL_ADC_CHANNEL_8);
/** Configure Regular Channel
*/
LL_ADC_REG_SetSequencerChAdd(ADC1, LL_ADC_CHANNEL_9);
/** Configure Regular Channel
*/
LL_ADC_REG_SetSequencerChAdd(ADC1, LL_ADC_CHANNEL_10);
/** Configure Regular Channel /** Configure Regular Channel
*/ */
LL_ADC_REG_SetSequencerChAdd(ADC1, LL_ADC_CHANNEL_13); LL_ADC_REG_SetSequencerChAdd(ADC1, LL_ADC_CHANNEL_13);

View File

@ -78,12 +78,6 @@ void MX_GPIO_Init(void)
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO; GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(GPIOC, &GPIO_InitStruct); LL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = LL_GPIO_PIN_0;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/**/ /**/
GPIO_InitStruct.Pin = LL_GPIO_PIN_1; GPIO_InitStruct.Pin = LL_GPIO_PIN_1;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG; GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
@ -150,12 +144,6 @@ void MX_GPIO_Init(void)
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO; GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(GPIOC, &GPIO_InitStruct); LL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/**/
GPIO_InitStruct.Pin = LL_GPIO_PIN_1;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/**/ /**/
GPIO_InitStruct.Pin = LL_GPIO_PIN_2; GPIO_InitStruct.Pin = LL_GPIO_PIN_2;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG; GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;

View File

@ -154,7 +154,7 @@ void DMA1_Channel1_IRQHandler(void)
/* USER CODE END DMA1_Channel1_IRQn 0 */ /* USER CODE END DMA1_Channel1_IRQn 0 */
/* USER CODE BEGIN DMA1_Channel1_IRQn 1 */ /* USER CODE BEGIN DMA1_Channel1_IRQn 1 */
adc_convert_callback(adc1);
/* USER CODE END DMA1_Channel1_IRQn 1 */ /* USER CODE END DMA1_Channel1_IRQn 1 */
} }
@ -168,7 +168,7 @@ void DMA1_Channel2_3_IRQHandler(void)
/* USER CODE END DMA1_Channel2_3_IRQn 0 */ /* USER CODE END DMA1_Channel2_3_IRQn 0 */
/* USER CODE BEGIN DMA1_Channel2_3_IRQn 1 */ /* USER CODE BEGIN DMA1_Channel2_3_IRQn 1 */
uart_dma_reception_callback(uarts[UART_NUM_1]);
/* USER CODE END DMA1_Channel2_3_IRQn 1 */ /* USER CODE END DMA1_Channel2_3_IRQn 1 */
} }
@ -201,10 +201,8 @@ void TIM21_IRQHandler(void)
/* USER CODE BEGIN TIM21_IRQn 1 */ /* USER CODE BEGIN TIM21_IRQn 1 */
if (LL_TIM_IsActiveFlag_UPDATE(TIM21)) if (LL_TIM_IsActiveFlag_UPDATE(TIM21))
{ {
__NOP();
step_motor_update(motor); step_motor_update(motor);
LL_TIM_ClearFlag_UPDATE(TIM21); LL_TIM_ClearFlag_UPDATE(TIM21);
__NOP();
} }
/* USER CODE END TIM21_IRQn 1 */ /* USER CODE END TIM21_IRQn 1 */
} }
@ -218,7 +216,7 @@ void USART1_IRQHandler(void)
/* USER CODE END USART1_IRQn 0 */ /* USER CODE END USART1_IRQn 0 */
/* USER CODE BEGIN USART1_IRQn 1 */ /* USER CODE BEGIN USART1_IRQn 1 */
uart_reception_callback(uarts[UART_NUM_1]);
/* USER CODE END USART1_IRQn 1 */ /* USER CODE END USART1_IRQn 1 */
} }

View File

@ -145,7 +145,7 @@
<SetRegEntry> <SetRegEntry>
<Number>0</Number> <Number>0</Number>
<Key>ST-LINKIII-KEIL_SWO</Key> <Key>ST-LINKIII-KEIL_SWO</Key>
<Name>-US -O2254 -SF10000 -C0 -A0 -I0 -HNlocalhost -HP7184 -P1 -N00("ARM CoreSight SW-DP (ARM Core") -D00(0BC11477) -L00(0) -TO131090 -TC10000000 -TT10000000 -TP21 -TDS8007 -TDT0 -TDC1F -TIEFFFFFFFF -TIP8 -FO7 -FD20000000 -FC800 -FN1 -FF0STM32L0xx_128.FLM -FS08000000 -FL020000 -FP0($$Device:STM32L072RBTx$CMSIS\Flash\STM32L0xx_128.FLM) -WA0 -WE0 -WVCE4 -WS2710 -WM0 -WP2</Name> <Name>-US -O2254 -SF10000 -C0 -A0 -I0 -HNlocalhost -HP7184 -P1 -N00("ARM CoreSight SW-DP (ARM Core") -D00(0BC11477) -L00(0) -TO131090 -TC10000000 -TT10000000 -TP21 -TDS8000 -TDT0 -TDC1F -TIEFFFFFFFF -TIP8 -FO15 -FD20000000 -FC800 -FN1 -FF0STM32L0xx_128.FLM -FS08000000 -FL020000 -FP0($$Device:STM32L072RBTx$CMSIS\Flash\STM32L0xx_128.FLM) -WA0 -WE0 -WVCE4 -WS2710 -WM0 -WP2</Name>
</SetRegEntry> </SetRegEntry>
</TargetDriverDllRegistry> </TargetDriverDllRegistry>
<Breakpoint/> <Breakpoint/>
@ -158,24 +158,37 @@
<Ww> <Ww>
<count>1</count> <count>1</count>
<WinNumber>1</WinNumber> <WinNumber>1</WinNumber>
<ItemText>motor_state,0x0A</ItemText> <ItemText>test_buffer,0x10</ItemText>
</Ww> </Ww>
<Ww> <Ww>
<count>2</count> <count>2</count>
<WinNumber>1</WinNumber> <WinNumber>1</WinNumber>
<ItemText>motor-&gt;handle.step_motor.attribute,0x0A</ItemText> <ItemText>self_test,0x0A</ItemText>
</Ww> </Ww>
<Ww> <Ww>
<count>3</count> <count>3</count>
<WinNumber>1</WinNumber> <WinNumber>1</WinNumber>
<ItemText>motor_param,0x0A</ItemText> <ItemText>motor,0x0A</ItemText>
</Ww> </Ww>
<Ww> <Ww>
<count>4</count> <count>4</count>
<WinNumber>1</WinNumber> <WinNumber>1</WinNumber>
<ItemText>\\motor\../User/board/board.c\motor_state,0x0A</ItemText> <ItemText>motor_param,0x0A</ItemText>
</Ww>
<Ww>
<count>5</count>
<WinNumber>1</WinNumber>
<ItemText>detect_result,0x0A</ItemText>
</Ww> </Ww>
</WatchWindow1> </WatchWindow1>
<MemoryWindow1>
<Mm>
<WinNumber>1</WinNumber>
<SubType>0</SubType>
<ItemText>0x20000090</ItemText>
<AccSizeX>0</AccSizeX>
</Mm>
</MemoryWindow1>
<Tracepoint> <Tracepoint>
<THDelay>0</THDelay> <THDelay>0</THDelay>
</Tracepoint> </Tracepoint>
@ -478,7 +491,7 @@
<Group> <Group>
<GroupName>User</GroupName> <GroupName>User</GroupName>
<tvExp>0</tvExp> <tvExp>1</tvExp>
<tvExpOptDlg>0</tvExpOptDlg> <tvExpOptDlg>0</tvExpOptDlg>
<cbSel>0</cbSel> <cbSel>0</cbSel>
<RteFlg>0</RteFlg> <RteFlg>0</RteFlg>
@ -774,7 +787,7 @@
<Group> <Group>
<GroupName>User/board</GroupName> <GroupName>User/board</GroupName>
<tvExp>0</tvExp> <tvExp>1</tvExp>
<tvExpOptDlg>0</tvExpOptDlg> <tvExpOptDlg>0</tvExpOptDlg>
<cbSel>0</cbSel> <cbSel>0</cbSel>
<RteFlg>0</RteFlg> <RteFlg>0</RteFlg>

View File

@ -54,7 +54,7 @@
<CreateLib>0</CreateLib> <CreateLib>0</CreateLib>
<CreateHexFile>1</CreateHexFile> <CreateHexFile>1</CreateHexFile>
<DebugInformation>1</DebugInformation> <DebugInformation>1</DebugInformation>
<BrowseInformation>1</BrowseInformation> <BrowseInformation>0</BrowseInformation>
<ListingPath></ListingPath> <ListingPath></ListingPath>
<HexFormatSelection>1</HexFormatSelection> <HexFormatSelection>1</HexFormatSelection>
<Merge32K>0</Merge32K> <Merge32K>0</Merge32K>
@ -138,7 +138,7 @@
</Flash1> </Flash1>
<bUseTDR>1</bUseTDR> <bUseTDR>1</bUseTDR>
<Flash2>BIN\UL2V8M.DLL</Flash2> <Flash2>BIN\UL2V8M.DLL</Flash2>
<Flash3></Flash3> <Flash3>"" ()</Flash3>
<Flash4></Flash4> <Flash4></Flash4>
<pFcarmOut></pFcarmOut> <pFcarmOut></pFcarmOut>
<pFcarmGrp></pFcarmGrp> <pFcarmGrp></pFcarmGrp>
@ -314,7 +314,7 @@
</ArmAdsMisc> </ArmAdsMisc>
<Cads> <Cads>
<interw>1</interw> <interw>1</interw>
<Optim>0</Optim> <Optim>1</Optim>
<oTime>0</oTime> <oTime>0</oTime>
<SplitLS>0</SplitLS> <SplitLS>0</SplitLS>
<OneElfS>1</OneElfS> <OneElfS>1</OneElfS>

File diff suppressed because it is too large Load Diff

View File

@ -14,9 +14,11 @@ typedef struct
typedef struct typedef struct
{ {
calibration_sensor_data_t torsion_in13; // 扭力 calibration_sensor_data_t torsion_in13; // 扭力
calibration_sensor_data_t pressure_in7; // 压力 calibration_sensor_data_t ipressure_in7; // 压力
calibration_sensor_data_t pressure_in8; // 流量 calibration_sensor_data_t iflow_in8; // 流量
calibration_sensor_data_t opressure_in9; // 压力
calibration_sensor_data_t oflow_in10; // 流量
} adcs_t; } adcs_t;
typedef struct typedef struct

View File

@ -7,6 +7,7 @@
extern __IO app_t app; extern __IO app_t app;
extern motor_t *motor; extern motor_t *motor;
extern uint8_t detect_result;
static struct flow fl_adc_inspection; // ADC static struct flow fl_adc_inspection; // ADC
static struct flow fl_systom_inspection; // 系统 static struct flow fl_systom_inspection; // 系统
@ -17,16 +18,29 @@ static uint8_t adc_inspection(struct flow *fl)
FL_HEAD(fl); FL_HEAD(fl);
for (;;) for (;;)
{ {
detect_result = ST_DEV_NORMAL;
// 扭力 // 扭力
app.adc.torsion_in13.original_value = adc_get_result_average(IN13); app.adc.torsion_in13.original_value = get_sensor_adc(GET_TORSION_VALUE);
app.adc.torsion_in13.calibration_value = torsion_detect(app.adc.torsion_in13.original_value); app.adc.torsion_in13.calibration_value = torsion_detect();
// 压力 sensor_adc[GET_TORSION_VALUE] = S2B_UINT16(app.adc.torsion_in13.original_value);
app.adc.pressure_in7.original_value = adc_get_result_average(IN7); // 输入压力
app.adc.pressure_in7.calibration_value = pressure_detect(app.adc.pressure_in7.original_value); app.adc.ipressure_in7.original_value = get_sensor_adc(GET_INPUT_PRESS_VALUE);
// 流量 app.adc.ipressure_in7.calibration_value = pressure_detect(GET_INPUT_PRESS_VALUE);
app.adc.pressure_in8.original_value = adc_get_result_average(IN8); sensor_adc[GET_INPUT_PRESS_VALUE] = S2B_UINT16(app.adc.ipressure_in7.original_value);
app.adc.pressure_in8.calibration_value = flow_detect(app.adc.pressure_in8.original_value); // 输出压力
FL_LOCK_DELAY(fl, FL_CLOCK_100MSEC); /* 延时100毫秒 */ app.adc.opressure_in9.original_value = get_sensor_adc(GET_OUTPUT_PRESS_VALUE);
app.adc.opressure_in9.calibration_value = pressure_detect(GET_OUTPUT_PRESS_VALUE);
sensor_adc[GET_OUTPUT_PRESS_VALUE] = S2B_UINT16(app.adc.opressure_in9.original_value);
// 输入流量
app.adc.iflow_in8.original_value = get_sensor_adc(GET_INPUT_FLOW_VALUE);
app.adc.iflow_in8.calibration_value = flow_detect(GET_INPUT_FLOW_VALUE);
sensor_adc[GET_INPUT_FLOW_VALUE] = S2B_UINT16(app.adc.iflow_in8.original_value);
// 输出流量
app.adc.oflow_in10.original_value = get_sensor_adc(GET_OUTPUT_FLOW_VALUE);
app.adc.oflow_in10.calibration_value = flow_detect(GET_OUTPUT_FLOW_VALUE);
sensor_adc[GET_OUTPUT_FLOW_VALUE] = S2B_UINT16(app.adc.oflow_in10.original_value);
FL_LOCK_DELAY(fl, FL_CLOCK_10MSEC); /* 延时10毫秒 */
} }
FL_TAIL(fl); FL_TAIL(fl);
} }
@ -36,8 +50,8 @@ static uint8_t systom_inspection(struct flow *fl)
FL_HEAD(fl); FL_HEAD(fl);
for (;;) for (;;)
{ {
motor_process(); host_rx_msg_deal();
FL_LOCK_DELAY(fl, FL_CLOCK_100MSEC); /* 延时100毫秒 */ FL_LOCK_DELAY(fl, FL_CLOCK_10MSEC); /* 延时10毫秒 */
} }
FL_TAIL(fl); FL_TAIL(fl);
} }
@ -47,8 +61,9 @@ static uint8_t idle_inspection(struct flow *fl)
FL_HEAD(fl); FL_HEAD(fl);
for (;;) for (;;)
{ {
test_process();
cpu_percent = scheduler_time_occupancy_get(1000); cpu_percent = scheduler_time_occupancy_get(1000);
FL_LOCK_DELAY(fl, FL_CLOCK_SEC); FL_LOCK_DELAY(fl, FL_CLOCK_10MSEC);
} }
FL_TAIL(fl); FL_TAIL(fl);
} }

View File

@ -0,0 +1,2 @@
#include "motor.h"

View File

@ -0,0 +1,8 @@
#ifndef __MOTOR_APP_H__
#define __MOTOR_APP_H__
extern void motor_process(void);
#endif

View File

@ -1,47 +1,170 @@
#include "board.h" #include "board.h"
#include "motor.h" #include "motor.h"
extern uint8_t detect_result;
void motor_process(frame_msg_t *rx, frame_msg_t *bk);
void sensor_process(frame_msg_t *rx, frame_msg_t *bk);
void error_process(uint8_t err, frame_msg_t *rx, frame_msg_t *bk);
/************************************* 串口通讯 *************************************/
uart_t *uarts[UART_NUM_MAX]; uart_t *uarts[UART_NUM_MAX];
__IO static BOOL execute_state = IDLE; // 数据处理标志
static frame_msg_t rx_msg; // 接收数据句柄
static frame_msg_t bk_msg; // 回复数据句柄
static uint8_t host_send_buffer[UART_TXSIZE] = {0}; // 数据发送缓存
// 串口发送
static void host_send_msg(uint8_t *data, uint16_t len)
{
uart_send_data(uarts[UART_NUM_1], data, len);
}
// 数据有效性检查
static BOOL host_data_verify(uint8_t *data, uint16_t len)
{
BOOL ret = TRUE;
uint8_t ver_len = 0;
uint8_t msg_crc = 0, ver_crc = 0;
// 包头包尾检查
if (data[0] != PACKET_STX || data[1] != ST_DEV_NORMAL || data[len - 1] != PACKET_ETX)
{
ret = FALSE;
return ret;
}
// 长度检查
ver_len = PACKET_MIN_LEN + data[DATA_LEN_INDEX];
if (ver_len != len)
{
ret = FALSE;
return ret;
}
// CRC校验
msg_crc = data[len - 2];
ver_crc = xor_compute((uint8_t *)&data[1], (len - 3)); // 减去包头、包尾、校验
if (msg_crc != ver_crc)
{
ret = FALSE;
return ret;
}
return ret;
}
// 数据解码
static void host_data_decode(uint8_t *data, uint16_t len)
{
DBG_ASSERT(data != NULL __DBG_LINE);
// 获取数据长度和消息长度
uint8_t data_len = data[DATA_LEN_INDEX];
uint8_t msg_len = DATA_INDEX + data_len;
// 获取消息数据
osel_memcpy((uint8_t *)&rx_msg, data, msg_len);
}
// 指令执行
static void host_cmd_execute(frame_msg_t *rx_msg, frame_msg_t *bk_msg)
{
DBG_ASSERT(rx_msg != NULL __DBG_LINE);
DBG_ASSERT(bk_msg != NULL __DBG_LINE);
switch (rx_msg->dev_no)
{
case ADC_SENSOR:
sensor_process(rx_msg, bk_msg);
break;
case MOTOR:
motor_process(rx_msg, bk_msg);
break;
default:
error_process(ST_CMD_IVALID, rx_msg, bk_msg);
break;
}
}
// 数据编码
static void host_data_encode(frame_msg_t *msg)
{
DBG_ASSERT(msg != NULL __DBG_LINE);
uint8_t *pbuf = (uint8_t *)host_send_buffer;
uint8_t index = 0, len = 0;
// 消息数据
uint8_t msg_len = DATA_INDEX + msg->len;
osel_memcpy(pbuf, (uint8_t *)msg, msg_len);
// 校验码
index += msg_len;
pbuf[index] = xor_compute((uint8_t *)&pbuf[1], (msg_len - 1)); // 减去包头
// 包尾
index += 1;
pbuf[index] = PACKET_ETX;
// 计算报文长度
len = msg_len + 2; // 加上校验、包尾
// 发送
host_send_msg(pbuf, len);
}
// 数据处理
void host_rx_msg_deal(void)
{
if (execute_state == IDLE)
{
return;
}
frame_msg_t *p_rx_msg = (frame_msg_t *)&rx_msg;
frame_msg_t *p_bk_msg = (frame_msg_t *)&bk_msg;
// 执行
host_cmd_execute(p_rx_msg, p_bk_msg);
// 回复(组包 + 发送)
host_data_encode(p_bk_msg);
// 复位
osel_memset((uint8_t *)host_send_buffer, 0, UART_TXSIZE);
osel_memset((uint8_t *)&rx_msg, 0, sizeof(frame_msg_t));
osel_memset((uint8_t *)&bk_msg, 0, sizeof(frame_msg_t));
execute_state = IDLE;
detect_result = ST_DEV_NORMAL;
}
// 串口接收回调
static void host_rx_cb(uint8_t uart_index, uint8_t *data, uint16_t len)
{
BOOL ret = FALSE;
// 数据有效性检查
ret = host_data_verify(data, len);
// 数据解码
if (ret == TRUE && execute_state == IDLE)
{
host_data_decode(data, len);
execute_state = BUSY;
}
}
// 串口初始化
static void host_uart_init(void)
{
if (uarts[UART_NUM_1] == NULL)
{
uarts[UART_NUM_1] = uart_create(USART1, TRUE, UART_RXSIZE, host_rx_cb, TRUE, UART_TXSIZE, NULL);
uarts[UART_NUM_1]->uart_index = UART_NUM_1;
uarts[UART_NUM_1]->dma = DMA1;
uarts[UART_NUM_1]->dma_rx_channel = LL_DMA_CHANNEL_3;
uarts[UART_NUM_1]->dma_tx_channel = LL_DMA_CHANNEL_2;
uart_recv_en(uarts[UART_NUM_1]);
}
}
/************************************* 电机 *************************************/
// 电机对象
motor_t *motor; motor_t *motor;
motor_ctrl_t *motor_param = NULL; motor_ctrl_t *motor_param = NULL;
uint8_t motor_state = MOTOR_IDEL;
adc_t adc1 = {
.adc = ADC1,
.dma = DMA1,
.dma_channel = LL_DMA_CHANNEL_1,
};
// 单位N·m
float32 torsion_detect(uint16_t adc)
{
float32 val = 0;
val = (float32)adc / 4096 * 3000;
val = (val - 1500) / 101 / (1.934 * 3) * 10;
return val;
}
// 单位kPa
float32 pressure_detect(uint16_t adc)
{
float32 val = 0;
val = (float32)adc / 4096 * 3000;
val = (val - 600) / (10 * 15) / 16 * 1000;
return val;
}
// 单位SLPM
float32 flow_detect(uint16_t adc)
{
float32 val = 0;
val = (float32)adc / 4096 * 3000;
val = (val - 600) / (10 * 15) / 16 * 300;
return val;
}
// 电机初始化
static void motor_init(void) static void motor_init(void)
{ {
motor = motor_create(STEP_MOTOR); motor = motor_create(STEP_MOTOR);
@ -53,7 +176,57 @@ static void motor_init(void)
.port = ENA_GPIO_Port, .port = ENA_GPIO_Port,
.pin = ENA_Pin, .pin = ENA_Pin,
}; };
motor->handle.step_motor.interface.init(motor, dir, en, MAX_STEP_ANGLE, TIM21, LL_TIM_CHANNEL_CH2); motor->handle.step_motor.interface.init(motor, dir, en, MIN_STEP_ANGLE, TIM21, LL_TIM_CHANNEL_CH2);
}
static uint8_t motor_param_get(frame_msg_t *rx, motor_ctrl_t *param)
{
uint8_t state = ST_DEV_NORMAL;
// 检查数据长度方向1个字节角度4个字节
if (rx->len < 5)
{
state = ST_CMD_IVALID;
return state;
}
// 方向
param->dir = rx->data[0];
// 角度
osel_memcpy((uint8_t *)&param->angle, (uint8_t *)&rx->data[1], 4);
param->angle = B2S_FLOAT32(param->angle);
return state;
}
static uint8_t motor_ctrl(uint8_t sw, motor_ctrl_t *param)
{
step_motor_t *step_motor = &motor->handle.step_motor;
uint8_t state = detect_result;
if (sw == RUN && detect_result == ST_DEV_NORMAL)
{
step_motor->interface.set_angle(motor, param->angle, (dir_e)param->dir);
}
else
{
step_motor->interface.stop(motor);
}
return state;
}
static void motor_state(frame_msg_t *rx, frame_msg_t *bk)
{
DBG_ASSERT(bk != NULL __DBG_LINE);
step_motor_t *step_motor = &motor->handle.step_motor;
uint8_t state = ST_DEV_NORMAL;
// 回复数据
bk->head = PACKET_STX;
bk->state = state;
bk->dev_no = rx->dev_no;
bk->cmd_no = rx->cmd_no;
bk->len = sizeof(uint8_t);
bk->data[0] = step_motor->attribute.state;
} }
void motor_process_init(void) void motor_process_init(void)
@ -63,38 +236,301 @@ void motor_process_init(void)
osel_memset((uint8_t *)motor_param, 0, sizeof(motor_ctrl_t)); osel_memset((uint8_t *)motor_param, 0, sizeof(motor_ctrl_t));
} }
void motor_process(void) // 电机任务
void motor_process(frame_msg_t *rx, frame_msg_t *bk)
{ {
step_motor_t *step_motor = &motor->handle.step_motor; DBG_ASSERT(rx != NULL __DBG_LINE);
DBG_ASSERT(bk != NULL __DBG_LINE);
switch (motor_state) motor_ctrl_t *ctrl_param = motor_param;
uint8_t state = ST_DEV_NORMAL;
switch (rx->cmd_no)
{ {
case MOTOR_RUN: case SET_MOTOR_SPEED: // 设置电机转速
step_motor->interface.run(motor, (dir_e)motor_param->dir);
motor_state = MOTOR_IDEL;
break; break;
case MOTOR_STOP: case MOTOR_MOVE: // 运行电机
step_motor->interface.stop(motor); {
motor_state = MOTOR_IDEL; // 读取参数
state = motor_param_get(rx, ctrl_param);
// 运行电机
if (state == ST_DEV_NORMAL)
{
state = motor_ctrl(RUN, ctrl_param);
}
// 回复数据
osel_memcpy((uint8_t *)bk, (uint8_t *)rx, sizeof(frame_msg_t));
bk->state = state;
break; break;
case MOTOR_STEP: }
step_motor->interface.set_angle(motor, motor_param->angle, (dir_e)motor_param->dir); case MOTOR_STOP: // 停止电机
motor_state = MOTOR_IDEL; {
// 停止电机
state = motor_ctrl(STOP, ctrl_param);
// 回复数据
osel_memcpy((uint8_t *)bk, (uint8_t *)rx, sizeof(frame_msg_t));
bk->state = state;
break; break;
case MOTOR_IDEL: }
case MOTOR_STATE:
motor_state(rx, bk);
break; break;
default: default:
error_process(ST_CMD_IVALID, rx, bk);
break; break;
} }
} }
/************************************* ADc传感器 *************************************/
uint8_t detect_result = ST_DEV_NORMAL; // 数据转换结果
uint16_t sensor_adc[GET_ALL_VALUE] = {0};
// AD传感器
adc_t adc1 = {
.adc = ADC1,
.dma = DMA1,
.dma_channel = LL_DMA_CHANNEL_1,
};
uint16_t get_sensor_adc(uint8_t id)
{
uint16_t adc = 0;
switch (id)
{
case GET_TORSION_VALUE: // 扭力单位N·m
adc = adc_get_result_average(IN13);
break;
case GET_INPUT_PRESS_VALUE: // 输入压力单位kPa
adc = adc_get_result_average(IN7);
break;
case GET_OUTPUT_PRESS_VALUE: // 输出压力单位kPa
adc = adc_get_result_average(IN9);
break;
case GET_INPUT_FLOW_VALUE: // 输入流量单位SLPM
adc = adc_get_result_average(IN8);
break;
case GET_OUTPUT_FLOW_VALUE: // 输出流量单位SLPM
adc = adc_get_result_average(IN10);
break;
}
return adc;
}
float32 torsion_detect(void)
{
float32 adc = 0.0, val = 0.0;
adc = get_sensor_adc(GET_TORSION_VALUE);
val = adc / 4096 * 3000;
if (val < 914 || val > 2086)
{
detect_result = ST_DEV_MISS;
}
val = (val - 1500) / 101 / (1.934 * 3) * 10;
return val;
}
float32 pressure_detect(uint8_t id)
{
float32 adc = 0.0, val = 0.0;
adc = get_sensor_adc(id);
val = adc / 4096 * 3000;
if (val < 500 || val > 3000)
{
detect_result = ST_DEV_MISS;
}
val = (val - 600) / (10 * 15) / 16 * 1600;
return val;
}
float32 flow_detect(uint8_t id)
{
float32 adc = 0.0, val = 0.0;
adc = get_sensor_adc(id);
val = adc / 4096 * 3000;
if (val < 500 || val > 3000)
{
detect_result = ST_DEV_MISS;
}
val = (val - 600) / (10 * 15) / 16 * 300;
return val;
}
// 传感器任务
void sensor_process(frame_msg_t *rx, frame_msg_t *bk)
{
DBG_ASSERT(rx != NULL __DBG_LINE);
DBG_ASSERT(bk != NULL __DBG_LINE);
uint8_t state = ST_DEV_NORMAL;
// 检查指令合法性
if (rx->cmd_no > GET_ALL_VALUE)
{
state = ST_CMD_IVALID;
goto encode;
}
encode:
// 回复数据
bk->head = PACKET_STX;
bk->state = state;
bk->dev_no = rx->dev_no;
bk->cmd_no = rx->cmd_no;
if (rx->cmd_no >= GET_ALL_VALUE)
{
bk->len = sizeof(uint16_t) * GET_ALL_VALUE;
osel_memcpy((uint8_t *)bk->data, (uint8_t *)&sensor_adc, bk->len);
}
else
{
bk->len = sizeof(uint16_t);
osel_memcpy((uint8_t *)bk->data, (uint8_t *)&sensor_adc[bk->cmd_no], bk->len);
}
}
/************************************* 测试 *************************************/
#if SELF_TEST
test_t self_test = {TEST_DEV_IDEL, 0};
uint8_t test_buffer[UART_RXSIZE] = {0}; // 数据接收缓存
#endif
// 传感器测试指令
static uint8_t test_sensor_cmd(uint8_t cmd, uint8_t *buf)
{
osel_memset(buf, 0, UART_RXSIZE);
uint8_t ver_len = 0;
uint8_t index = 0;
frame_msg_t msg;
msg.head = PACKET_STX;
msg.state = ST_DEV_NORMAL;
msg.dev_no = ADC_SENSOR;
msg.cmd_no = cmd;
msg.len = 0;
index = DATA_INDEX;
osel_memcpy(buf, (uint8_t *)&msg, index);
// 校验
buf[index] = xor_compute((uint8_t *)&buf[1], (index - 1)); // 减掉包头
index += 1;
// 包尾
buf[index] = PACKET_ETX;
index += 1;
// 帧长度
ver_len = index;
return ver_len;
}
// 电机测试指令
static uint8_t test_motor_cmd(uint8_t cmd, uint8_t *buf)
{
uint8_t ver_len = 0;
uint8_t index = 0;
frame_msg_t msg;
motor_ctrl_t motor_param;
msg.head = PACKET_STX;
msg.state = ST_DEV_NORMAL;
msg.dev_no = MOTOR;
msg.cmd_no = cmd;
switch (cmd)
{
case MOTOR_MOVE:
msg.len = 5; // 方向1个字节角度4个字节
break;
case MOTOR_STOP:
msg.len = 0;
break;
}
index = DATA_INDEX;
osel_memcpy(buf, (uint8_t *)&msg, index);
if (cmd == MOTOR_MOVE)
{
motor_param.dir = DIR_CCW;
motor_param.angle = 90;
motor_param.angle = S2B_FLOAT32(motor_param.angle);
}
osel_memcpy((uint8_t *)&buf[index], (uint8_t *)&motor_param, sizeof(motor_ctrl_t));
index += sizeof(motor_ctrl_t);
// 校验
buf[index] = xor_compute((uint8_t *)&buf[1], (index - 1)); // 减掉包头
index += 1;
// 包尾
buf[index] = PACKET_ETX;
index += 1;
// 帧长度
ver_len = index;
return ver_len;
}
// 发送测试数据
static void test_rx_cb(uint8_t *data, uint8_t len)
{
BOOL ret = FALSE;
// 数据有效性检查
ret = host_data_verify(data, len);
// 数据解码
if (ret == TRUE && execute_state == IDLE)
{
host_data_decode(data, len);
execute_state = BUSY;
}
}
// 测试任务
void test_process(void)
{
uint8_t len = 0;
uint8_t *buf = test_buffer;
if (self_test.dev_id >= TEST_DEV_MAX)
{
return;
}
switch (self_test.dev_id)
{
case TEST_DEV_SENSOR:
len = test_sensor_cmd(self_test.cmd_id, buf);
break;
case TEST_DEV_MOTOR:
len = test_motor_cmd(self_test.cmd_id, buf);
break;
default:
break;
}
test_rx_cb(buf, len);
self_test.dev_id = TEST_DEV_IDEL;
}
/************************************* 板卡 *************************************/
// 板卡初始化
void board_init(void) void board_init(void)
{ {
motor = NULL; motor = NULL;
osel_memset((uint8_t *)uarts, 0, sizeof(uarts));
my_mem_init(SRAMIN); my_mem_init(SRAMIN);
motor_init(); // 电机初始化 motor_init(); // 电机初始化
adc_init(adc1); // 初始化ADC1通道默认采集AD adc_init(adc1); // 初始化ADC1通道默认采集AD
host_uart_init(); // 串口初始化
ENABLE_TIM(TIM6); // 任务流程定时器使能 ENABLE_TIM(TIM6); // 任务流程定时器使能
} }
// 不支持的任务
void error_process(uint8_t err, frame_msg_t *rx, frame_msg_t *bk)
{
DBG_ASSERT(rx != NULL __DBG_LINE);
DBG_ASSERT(bk != NULL __DBG_LINE);
osel_memcpy((uint8_t *)bk, (uint8_t *)rx, sizeof(frame_msg_t));
bk->state = err;
}

View File

@ -4,11 +4,41 @@
#include "adcs.h" #include "adcs.h"
#include "uarts.h" #include "uarts.h"
#define UART_RXSIZE (240u) // 接收240个字节 #define SELF_TEST 1
#define UART_TXSIZE (240u) // 发送240个字节
#define PULSE_REV (18000.0 * 5) /* 每圈脉冲数 */ // 串口协议参数
#define MAX_STEP_ANGLE (360 / PULSE_REV) /* 最小步距(360/PULSE_REV) */ #define UART_RXSIZE (240u) // 接收缓冲区 240个字节
#define ANGLE 180 // 步进电机180度转盘转动1度 #define UART_TXSIZE (240u) // 发送缓冲区 240个字节
// 包头 + 状态码 + 设备号 + 命令号 + 长度 + 数据 + 校验 + 包尾
// 1 1 1 1 1 0~128 1 1
#define PACKET_STX 0xff // 包头
#define PACKET_ETX 0x3c // 包尾
#define PACKET_
#define DATA_LEN_INDEX 4 // 数据长度偏移
#define DATA_INDEX 5 // 数据偏移
// 最大数据长度
#define DATA_MAX_LEN 128
// 最小帧长度:包头 + 状态码 + 设备号 + 命令号 + 长度 + 校验 + 包尾
#define PACKET_MIN_LEN 7
// 最大帧长度
#define PACKET_MAX_LEN (DATA_MAX_LEN + PACKET_MIN_LEN)
// 电机初始默认值
#define PULSE_REV (18000.0 * 5) // 每圈脉冲数(驱动器脉冲)
#define MIN_STEP_ANGLE (360 / PULSE_REV) // 最小步距
typedef enum
{
IDLE = 0, // 空闲
BUSY = 1, // 忙碌
} host_state_e;
typedef enum
{
STOP = 0, // 停止
RUN = 1, // 运行
} motor_state_e;
typedef enum typedef enum
{ {
@ -20,13 +50,62 @@ typedef enum
UART_NUM_MAX, UART_NUM_MAX,
} uart_num_e; } uart_num_e;
// 设备号
typedef enum typedef enum
{ {
MOTOR_IDEL, ADC_SENSOR, // 传感器
MOTOR_RUN, MOTOR, // 电机
MOTOR_STOP, } dev_id_e;
MOTOR_STEP,
} motor_process_t; // 电机命令号
typedef enum
{
SET_MOTOR_SPEED, // 设置电机速度
MOTOR_MOVE, // 电机启动参数1方向参数2角度
MOTOR_STOP, // 电机停止
MOTOR_STATE, // 电机状态
} motor_cmd_e;
// 传感器命令号
typedef enum
{
GET_TORSION_VALUE, // 扭力
GET_INPUT_PRESS_VALUE, // 输入压力
GET_OUTPUT_PRESS_VALUE, // 输出压力
GET_INPUT_FLOW_VALUE, // 输入流量
GET_OUTPUT_FLOW_VALUE, // 输出流量
GET_ALL_VALUE, // 全部
} sensor_cmd_e;
// 状态码
typedef enum
{
ST_DEV_NORMAL, // 正常
ST_DEV_BUSY, // 忙碌
ST_DEV_MISS, // 故障
ST_CMD_IVALID, // 无效
} status_code_e;
// 测试
typedef enum
{
TEST_DEV_IDEL,
TEST_DEV_SENSOR,
TEST_DEV_MOTOR,
TEST_DEV_MAX,
} test_dev_e;
#pragma pack(1)
typedef struct
{
uint8_t head; // 包头
uint8_t state; // 状态
uint8_t dev_no; // 设备号
uint8_t cmd_no; // 命令号
uint8_t len; // 长度
uint8_t data[DATA_MAX_LEN]; // 数据
} frame_msg_t;
typedef struct typedef struct
{ {
@ -34,11 +113,23 @@ typedef struct
float32 angle; float32 angle;
} motor_ctrl_t; } motor_ctrl_t;
typedef struct
{
uint8_t dev_id;
uint8_t cmd_id;
} test_t;
#pragma pack()
extern uint16_t sensor_adc[GET_ALL_VALUE];
extern void board_init(void); extern void board_init(void);
extern uint16_t get_sensor_adc(uint8_t id);
extern float32 torsion_detect(void);
extern float32 pressure_detect(uint8_t id);
extern float32 flow_detect(uint8_t id);
extern void host_rx_msg_deal(void);
extern void motor_process_init(void); extern void motor_process_init(void);
extern void motor_process(void); extern void test_process(void);
extern float32 torsion_detect(uint16_t adc);
extern float32 pressure_detect(uint16_t adc);
extern float32 flow_detect(uint16_t adc);
#endif // __BOARD_H__ #endif // __BOARD_H__

View File

@ -20,9 +20,8 @@ static void step_motor_run(motor_t *motor, dir_e dir)
handle->attribute.dir = dir; handle->attribute.dir = dir;
handle->attribute.en = TRUE; handle->attribute.en = TRUE;
dir == DIR_CCW ? handle->gpios.dir->set(*handle->gpios.dir) : handle->gpios.dir->reset(*handle->gpios.dir); dir == DIR_CCW ? handle->gpios.dir->set(*handle->gpios.dir) : handle->gpios.dir->reset(*handle->gpios.dir);
LL_TIM_EnableIT_UPDATE(handle->pwm_timer);
// LL_TIM_EnableIT_CC2(handle->pwm_timer);
PWM_START(handle->pwm_timer, handle->pwm_channel); PWM_START(handle->pwm_timer, handle->pwm_channel);
handle->attribute.state = TRUE;
} }
static void step_motor_stop(motor_t *motor) static void step_motor_stop(motor_t *motor)
@ -34,8 +33,7 @@ static void step_motor_stop(motor_t *motor)
handle->attribute.angle = 0; handle->attribute.angle = 0;
handle->attribute.pulse_count = 0; handle->attribute.pulse_count = 0;
PWM_STOP(handle->pwm_timer, handle->pwm_channel); PWM_STOP(handle->pwm_timer, handle->pwm_channel);
LL_TIM_DisableIT_UPDATE(handle->pwm_timer); handle->attribute.state = FALSE;
LL_TIM_ClearFlag_UPDATE(TIM21);
if (handle->interface.stop_cb != NULL) if (handle->interface.stop_cb != NULL)
{ {
handle->interface.stop_cb(motor); handle->interface.stop_cb(motor);
@ -64,6 +62,10 @@ static void step_motor_set_angle(motor_t *motor, float32 angle, dir_e dir)
} }
} }
static void step_motor_set_speed(motor_t *motor, uint32_t psc)
{
}
/** /**
* @brief * @brief
* @param {motor_t} *motor * @param {motor_t} *motor
@ -90,8 +92,7 @@ void step_motor_update(motor_t *motor)
if (handle->attribute.pulse_count <= 0) /* 当脉冲数等于0的时候 代表需要发送的脉冲个数已完成,停止定时器输出 */ if (handle->attribute.pulse_count <= 0) /* 当脉冲数等于0的时候 代表需要发送的脉冲个数已完成,停止定时器输出 */
{ {
LOG_PRINT("累计旋转的角度:%d\r\n", (int)(handle->attribute.add_pulse_count * handle->attribute.min_step_angle)); /* 打印累计转动了多少角度 */ LOG_PRINT("累计旋转的角度:%d\r\n", (int)(handle->attribute.add_pulse_count * handle->attribute.min_step_angle)); /* 打印累计转动了多少角度 */
handle->interface.stop(motor); handle->interface.stop(motor); /* 停止接口一输出 */
/* 停止接口一输出 */
} }
} }
@ -108,6 +109,7 @@ motor_t *motor_create(motor_type_e motor_type)
motor->handle.step_motor.interface.run = step_motor_run; motor->handle.step_motor.interface.run = step_motor_run;
motor->handle.step_motor.interface.stop = step_motor_stop; motor->handle.step_motor.interface.stop = step_motor_stop;
motor->handle.step_motor.interface.set_angle = step_motor_set_angle; motor->handle.step_motor.interface.set_angle = step_motor_set_angle;
motor->handle.step_motor.interface.set_speed = step_motor_set_speed;
break; break;
default: default:

View File

@ -15,8 +15,8 @@ typedef struct MOTOR motor_t;
typedef enum typedef enum
{ {
DIR_CCW = 0, /* 逆时针旋转 */ DIR_CW = 0, /* 逆时针旋转 */
DIR_CW, /* 顺时针旋转 */ DIR_CCW, /* 顺时针旋转 */
} dir_e; } dir_e;
typedef enum typedef enum
{ {
@ -39,18 +39,19 @@ typedef struct
void (*stop)(motor_t *motor); // 停止 void (*stop)(motor_t *motor); // 停止
void (*set_angle)(motor_t *motor, float32 angle, dir_e dir); // 将角度转换成脉冲个数并运行 void (*set_angle)(motor_t *motor, float32 angle, dir_e dir); // 将角度转换成脉冲个数并运行
void (*stop_cb)(motor_t *motor); // 停止回调函数,在stop中执行 void (*stop_cb)(motor_t *motor); // 停止回调函数,在stop中执行
void (*set_speed)(motor_t *motor, uint32_t psc);
} step_motor_interface_t; } step_motor_interface_t;
typedef struct typedef struct
{ {
float32 min_step_angle; /* 最小步距角 */ float32 min_step_angle; /* 最小步距角 */
float32 angle; /* 设置需要旋转的角度 */ int angle; /* 设置需要旋转的角度 */
dir_e dir; /* 方向 */ dir_e dir; /* 方向 */
uint8_t en; /* 使能 */ uint8_t en; /* 使能 */
__IO uint32_t pulse_count; /* 脉冲个数记录 */ __IO uint32_t pulse_count; /* 脉冲个数记录 */
__IO int add_pulse_count; /* 脉冲个数累计 */ __IO int add_pulse_count; /* 脉冲个数累计 */
__IO uint32_t step_angle; /* 步距 */ __IO uint32_t step_angle; /* 步距 */
uint8_t state; // 运动状态
} step_motor_attribute_t; } step_motor_attribute_t;
typedef struct typedef struct

View File

@ -71,11 +71,11 @@ typedef enum
// IN3, // IN3,
// IN4, // IN4,
// IN5, // IN5,
// IN6, // IN6,
IN7, IN7,
IN8, IN8,
// IN9, IN9,
// IN10, IN10,
// IN11, // IN11,
// IN12, // IN12,
IN13, IN13,

View File

@ -24,4 +24,31 @@
} while (__LINE__ == -1); } while (__LINE__ == -1);
#define WATCHDOG_RESET() LL_IWDG_ReloadCounter(IWDG) #define WATCHDOG_RESET() LL_IWDG_ReloadCounter(IWDG)
/**
* @brief Clears the flags of a DMA channel
* @param DMAX DMAx register base
* @param CHx DMA channel number
* @param Flag a boolean variable that indicates if the transfer is complete
* @note This function should be called within the interrupt service routine of the DMA channel
*/
#define DMA_ClEAR_FLAG(DMAX, CHx, Flag) \
do \
{ \
if (LL_DMA_IsActiveFlag_TC##CHx(DMAX)) \
{ \
LL_DMA_ClearFlag_TC##CHx(DMAX); \
LL_DMA_ClearFlag_GI##CHx(DMAX); \
Flag = TRUE; \
} \
if (LL_DMA_IsActiveFlag_TE##CHx(DMAX)) \
{ \
LL_DMA_ClearFlag_TE##CHx(DMAX); \
} \
if (LL_DMA_IsActiveFlag_GI##CHx(DMAX)) \
{ \
LL_DMA_ClearFlag_GI##CHx(DMAX); \
} \
} while (__LINE__ == -1)
#endif // __BSP_H__ #endif // __BSP_H__

View File

@ -8,6 +8,7 @@
{ \ { \
LL_TIM_EnableCounter(TIMx); \ LL_TIM_EnableCounter(TIMx); \
LL_TIM_CC_EnableChannel(TIMx, CHx); \ LL_TIM_CC_EnableChannel(TIMx, CHx); \
LL_TIM_EnableIT_UPDATE(TIMx); \
} while (__LINE__ == -1) } while (__LINE__ == -1)
// 停止PWM输出 // 停止PWM输出
@ -16,6 +17,7 @@
{ \ { \
LL_TIM_DisableCounter(TIMx); \ LL_TIM_DisableCounter(TIMx); \
LL_TIM_CC_DisableChannel(TIMx, CHx); \ LL_TIM_CC_DisableChannel(TIMx, CHx); \
LL_TIM_ClearFlag_UPDATE(TIMx); \
} while (__LINE__ == -1) } while (__LINE__ == -1)
// 修改比较值,修改占空比 // 修改比较值,修改占空比

View File

@ -41,6 +41,79 @@
} \ } \
} while (__LINE__ == -1) } while (__LINE__ == -1)
/**
* @file uarts.c
* @brief This file contains the implementation of DMA_CLEAR_FLAG_TC_CHANNEL macro.
*/
/**
* @brief Clear the Transfer Complete (TC) flag of a specific DMA channel.
*
* @param dma The DMA peripheral.
* @param channel The DMA channel number.
*/
#define DMA_CLEAR_FLAG_TC_CHANNEL(dma, channel) \
switch (channel) \
{ \
case 1: \
DMA_ClEAR_FLAG_TC(dma, 1); \
break; \
case 2: \
DMA_ClEAR_FLAG_TC(dma, 2); \
break; \
case 3: \
DMA_ClEAR_FLAG_TC(dma, 3); \
break; \
case 4: \
DMA_ClEAR_FLAG_TC(dma, 4); \
break; \
case 5: \
DMA_ClEAR_FLAG_TC(dma, 5); \
break; \
case 6: \
DMA_ClEAR_FLAG_TC(dma, 6); \
break; \
case 7: \
DMA_ClEAR_FLAG_TC(dma, 7); \
break; \
default: \
break; \
}
/**
* @brief Clear the Transfer Error (TE) flag for the specified DMA channel.
*
* @param dma The DMA peripheral.
* @param channel The DMA channel number.
*/
#define DMA_CLEAR_FLAG_TE_CHANNEL(dma, channel) \
switch (channel) \
{ \
case 1: \
DMA_ClEAR_FLAG_TE(dma, 1); \
break; \
case 2: \
DMA_ClEAR_FLAG_TE(dma, 2); \
break; \
case 3: \
DMA_ClEAR_FLAG_TE(dma, 3); \
break; \
case 4: \
DMA_ClEAR_FLAG_TE(dma, 4); \
break; \
case 5: \
DMA_ClEAR_FLAG_TE(dma, 5); \
break; \
case 6: \
DMA_ClEAR_FLAG_TE(dma, 6); \
break; \
case 7: \
DMA_ClEAR_FLAG_TE(dma, 7); \
break; \
default: \
break; \
}
/** /**
* @brief UART设备 * @brief UART设备
* @param {USART_TypeDef} *huart USART总线设备句柄 * @param {USART_TypeDef} *huart USART总线设备句柄
@ -130,6 +203,8 @@ void uart_recv_en(uart_t *uart)
LL_DMA_SetMemoryAddress(uart->dma, uart->dma_tx_channel, (uint32_t)uart->txbuf); LL_DMA_SetMemoryAddress(uart->dma, uart->dma_tx_channel, (uint32_t)uart->txbuf);
LL_DMA_EnableIT_TC(uart->dma, uart->dma_tx_channel); LL_DMA_EnableIT_TC(uart->dma, uart->dma_tx_channel);
LL_USART_EnableDMAReq_TX(uart->huart); LL_USART_EnableDMAReq_TX(uart->huart);
uart->tx_dma_ok = TRUE;
} }
} }
@ -169,8 +244,9 @@ void uart_send_data(uart_t *uart, uint8_t *data, uint16_t len)
DBG_ASSERT(data != NULL __DBG_LINE); DBG_ASSERT(data != NULL __DBG_LINE);
DBG_ASSERT(len > 0 __DBG_LINE); DBG_ASSERT(len > 0 __DBG_LINE);
uint8_t count = 0; uint8_t count = 0;
if (TRUE == uart->tx_dma_en) if (TRUE == uart->tx_dma_en && uart->tx_dma_ok == TRUE)
{ {
uart->tx_dma_ok = FALSE;
osel_memcpy(uart->txbuf, data, len); // 拷贝数据到发送缓冲区 osel_memcpy(uart->txbuf, data, len); // 拷贝数据到发送缓冲区
LL_DMA_DisableChannel(uart->dma, uart->dma_tx_channel); LL_DMA_DisableChannel(uart->dma, uart->dma_tx_channel);
// 配置数据长度 // 配置数据长度
@ -180,6 +256,7 @@ void uart_send_data(uart_t *uart, uint8_t *data, uint16_t len)
} }
else else
{ {
count = 0;
for (uint16_t i = 0; i < len; i++) for (uint16_t i = 0; i < len; i++)
{ {
count = 0; count = 0;
@ -191,13 +268,13 @@ void uart_send_data(uart_t *uart, uint8_t *data, uint16_t len)
} }
} }
LL_USART_TransmitData8(uart->huart, data[i]); LL_USART_TransmitData8(uart->huart, data[i]);
count = 0; }
while (!LL_USART_IsActiveFlag_TC(uart->huart)) count = 0;
while (!LL_USART_IsActiveFlag_TC(uart->huart))
{
if (count++ >= 0xFE)
{ {
if (count++ >= 0xFE) return;
{
return;
}
} }
} }
} }
@ -288,13 +365,12 @@ void uart_dma_reception_callback(uart_t *uart)
LL_DMA_DisableChannel(uart->dma, uart->dma_tx_channel); LL_DMA_DisableChannel(uart->dma, uart->dma_tx_channel);
// 清除发送中断标志位 // 清除发送中断标志位
DMA_ClEAR_FLAG_TC(uart->dma, 2); DMA_CLEAR_FLAG_TC_CHANNEL(uart->dma, uart->dma_tx_channel);
DMA_ClEAR_FLAG_TC(uart->dma, 7);
// 使能发送中断,用于关闭发送使能引脚 // 使能发送中断,用于关闭发送使能引脚
LL_USART_EnableIT_TC(uart->huart); // 使能发送中断,用于关闭发送使能引脚 LL_USART_EnableIT_TC(uart->huart); // 使能发送中断,用于关闭发送使能引脚
uart->tx_dma_ok = TRUE;
// 清除接收中断标志位 // 清除传输错误标志
DMA_ClEAR_FLAG_TE(uart->dma, 2); DMA_CLEAR_FLAG_TE_CHANNEL(uart->dma, uart->dma_tx_channel);
DMA_ClEAR_FLAG_TE(uart->dma, 7);
} }

View File

@ -1,47 +1,132 @@
/**
* @file uarts.h
* @brief Header file for UARTs module.
*
* This file contains the definitions and function prototypes for UARTs module.
* The UARTs module provides functions for creating and managing UART instances,
* enabling reception, sending data, and handling interrupts.
*/
#ifndef __UARTS_H__ #ifndef __UARTS_H__
#define __UARTS_H__ #define __UARTS_H__
#include "lib.h" #include "lib.h"
#include "main.h" #include "main.h"
// /**
* @brief Callback function type for UART receive interrupt.
*
* This function type is used to define the callback function for UART receive interrupt.
* The callback function is called when data is received on the UART.
*
* @param uart_index The index of the UART.
* @param data The received data.
* @param len The length of the received data.
*/
typedef void (*rx_interupt_cb_t)(uint8_t uart_index, uint8_t *data, uint16_t len); typedef void (*rx_interupt_cb_t)(uint8_t uart_index, uint8_t *data, uint16_t len);
// /**
* @brief Callback function type for UART transmit complete.
*
* This function type is used to define the callback function for UART transmit complete.
* The callback function is called when the UART transmission is complete.
*/
typedef void (*tx_complete_cb_t)(void); typedef void (*tx_complete_cb_t)(void);
// /**
* @brief Enumeration for UART status.
*/
typedef enum
{
UART_OK = 0x00u, /**< The action was successful. */
UART_ERROR = 0xFFu /**< Generic error. */
} uart_status_e;
/**
* @brief Structure representing a UART instance.
*/
typedef struct typedef struct
{ {
uint8_t uart_index; // 串口索引 uint8_t uart_index; /**< The index of the UART. */
USART_TypeDef *huart; USART_TypeDef *huart; /**< The UART peripheral. */
DMA_TypeDef *dma; // 外部设置 DMA_TypeDef *dma; /**< The DMA peripheral. */
uint32_t dma_rx_channel; // 外部设置 uint32_t dma_rx_channel; /**< The DMA receive channel. */
uint32_t dma_tx_channel; // 外部设置 uint32_t dma_tx_channel; /**< The DMA transmit channel. */
uint16_t rx_index; /**< The receive data index. */
uint16_t rx_index; // 接收数据索引 BOOL rx_dma_en; /**< Flag indicating if DMA reception is enabled. */
BOOL rx_dma_en; uint8_t *rxbuf; /**< The receive buffer. */
uint8_t *rxbuf; uint16_t rxsize; /**< The size of the receive buffer. */
uint16_t rx_sta; uint16_t tx_index; /**< The transmit data index. */
uint16_t rxsize; BOOL tx_dma_en; /**< Flag indicating if DMA transmission is enabled. */
uint8_t *txbuf; /**< The transmit buffer. */
uint16_t tx_index; uint16_t txsize; /**< The size of the transmit buffer. */
BOOL tx_dma_en; __IO BOOL tx_dma_ok; /**< Flag indicating if DMA transmission is complete. */
uint8_t *txbuf; rx_interupt_cb_t rx_interupt_cb; /**< The receive interrupt callback function. */
uint16_t txsize; tx_complete_cb_t tx_complete_cb; /**< The transmit complete callback function. */
// 接收中断回调
rx_interupt_cb_t rx_interupt_cb;
// 发生完成回调
tx_complete_cb_t tx_complete_cb;
} uart_t; } uart_t;
/**
* @brief Creates a UART instance.
*
* This function creates a UART instance with the specified parameters.
*
* @param huart The UART peripheral.
* @param rx_dma_en Flag indicating if DMA reception is enabled.
* @param rxsize The size of the receive buffer.
* @param rx_cb The receive interrupt callback function.
* @param tx_dma_en Flag indicating if DMA transmission is enabled.
* @param txsize The size of the transmit buffer.
* @param tx_complete_cb The transmit complete callback function.
* @return The created UART instance.
*/
extern uart_t *uart_create(USART_TypeDef *huart, BOOL rx_dma_en, uint16_t rxsize, rx_interupt_cb_t rx_cb, extern uart_t *uart_create(USART_TypeDef *huart, BOOL rx_dma_en, uint16_t rxsize, rx_interupt_cb_t rx_cb,
BOOL tx_dma_en, uint16_t txsize, tx_complete_cb_t tx_complete_cb); // 创建uart BOOL tx_dma_en, uint16_t txsize, tx_complete_cb_t tx_complete_cb);
extern void uart_free(uart_t *uart); // 释放uart资源
extern void uart_recv_en(uart_t *uart); // 使能接收 /**
extern void uart_send_data(uart_t *uart, uint8_t *data, uint16_t len); // 发送数据 * @brief Frees the resources of a UART instance.
extern void uart_reception_callback(uart_t *uart); // 接收中断回调 *
extern void uart_dma_reception_callback(uart_t *uart); // DMA接收中断回调 * This function frees the resources allocated for a UART instance.
*
* @param uart The UART instance to free.
*/
extern void uart_free(uart_t *uart);
/**
* @brief Enables UART reception.
*
* This function enables reception on the specified UART instance.
*
* @param uart The UART instance.
*/
extern void uart_recv_en(uart_t *uart);
/**
* @brief Sends data over UART.
*
* This function sends the specified data over the specified UART instance.
*
* @param uart The UART instance.
* @param data The data to send.
* @param len The length of the data.
*/
extern void uart_send_data(uart_t *uart, uint8_t *data, uint16_t len);
/**
* @brief UART receive interrupt callback.
*
* This function is the interrupt callback for UART receive interrupt.
*
* @param uart The UART instance.
*/
extern void uart_reception_callback(uart_t *uart);
/**
* @brief DMA receive interrupt callback.
*
* This function is the interrupt callback for DMA receive interrupt.
*
* @param uart The UART instance.
*/
extern void uart_dma_reception_callback(uart_t *uart);
#endif // __UARTS_H__ #endif // __UARTS_H__

View File

@ -57,20 +57,22 @@ Mcu.Name=STM32L072R(B-Z)Tx
Mcu.Package=LQFP64 Mcu.Package=LQFP64
Mcu.Pin0=PH0-OSC_IN Mcu.Pin0=PH0-OSC_IN
Mcu.Pin1=PH1-OSC_OUT Mcu.Pin1=PH1-OSC_OUT
Mcu.Pin10=PA10 Mcu.Pin10=PB15
Mcu.Pin11=PA13 Mcu.Pin11=PA9
Mcu.Pin12=PA14 Mcu.Pin12=PA10
Mcu.Pin13=VP_SYS_VS_Systick Mcu.Pin13=PA13
Mcu.Pin14=VP_TIM6_VS_ClockSourceINT Mcu.Pin14=PA14
Mcu.Pin2=PC3 Mcu.Pin15=VP_SYS_VS_Systick
Mcu.Pin3=PA7 Mcu.Pin16=VP_TIM6_VS_ClockSourceINT
Mcu.Pin4=PB0 Mcu.Pin2=PC0
Mcu.Pin5=PB12 Mcu.Pin3=PC3
Mcu.Pin6=PB13 Mcu.Pin4=PA7
Mcu.Pin7=PB14 Mcu.Pin5=PB0
Mcu.Pin8=PB15 Mcu.Pin6=PB1
Mcu.Pin9=PA9 Mcu.Pin7=PB12
Mcu.PinsNb=15 Mcu.Pin8=PB13
Mcu.Pin9=PB14
Mcu.PinsNb=17
Mcu.ThirdPartyNb=0 Mcu.ThirdPartyNb=0
Mcu.UserConstants= Mcu.UserConstants=
Mcu.UserName=STM32L072RBTx Mcu.UserName=STM32L072RBTx
@ -99,6 +101,8 @@ PA9.Mode=Asynchronous
PA9.Signal=USART1_TX PA9.Signal=USART1_TX
PB0.Mode=IN8 PB0.Mode=IN8
PB0.Signal=ADC_IN8 PB0.Signal=ADC_IN8
PB1.Mode=IN9
PB1.Signal=ADC_IN9
PB12.GPIOParameters=GPIO_Speed,PinState,GPIO_Label PB12.GPIOParameters=GPIO_Speed,PinState,GPIO_Label
PB12.GPIO_Label=ENA PB12.GPIO_Label=ENA
PB12.GPIO_Speed=GPIO_SPEED_FREQ_HIGH PB12.GPIO_Speed=GPIO_SPEED_FREQ_HIGH
@ -116,6 +120,8 @@ PB15.GPIOParameters=GPIO_PuPd,GPIO_Label
PB15.GPIO_Label=STOPPER PB15.GPIO_Label=STOPPER
PB15.GPIO_PuPd=GPIO_PULLUP PB15.GPIO_PuPd=GPIO_PULLUP
PB15.Signal=GPXTI15 PB15.Signal=GPXTI15
PC0.Mode=IN10
PC0.Signal=ADC_IN10
PC3.GPIOParameters=GPIO_PuPd,GPIO_Label,GPIO_Mode PC3.GPIOParameters=GPIO_PuPd,GPIO_Label,GPIO_Mode
PC3.GPIO_Label=MG_ADC_IN13 PC3.GPIO_Label=MG_ADC_IN13
PC3.GPIO_Mode=GPIO_MODE_ANALOG PC3.GPIO_Mode=GPIO_MODE_ANALOG