system/lib/control/custom/pid_x.c

482 lines
14 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "pid_x.h"
#include "math.h"
#define LAG_PHASE (6) // 迟滞相位,单位:拍
#ifndef PI
#define PI 3.14159265358979f
#endif
// 注1自适应模糊pid最重要的就是论域的选择要和你应该控制的对象相切合
// 注2以下各阀值、限幅值、输出值均需要根据具体的使用情况进行更改
// 注3因为我的控制对象惯性比较大所以以下各部分取值较小
// 论域e:[-5,5] ec:[-0.5,0.5]
// 误差的阀值小于这个数值的时候不做PID调整避免误差较小时频繁调节引起震荡
#define Emin 0.3f
#define Emid 1.0f
#define Emax 5.0f
// 调整值限幅,防止积分饱和
#define Umax 1
#define Umin -1
#define NB 0
#define NM 1
#define NS 2
#define ZO 3
#define PS 4
#define PM 5
#define PB 6
int32_t kp[7][7] = {{PB, PB, PM, PM, PS, ZO, ZO},
{PB, PB, PM, PS, PS, ZO, ZO},
{PM, PM, PM, PS, ZO, NS, NS},
{PM, PM, PS, ZO, NS, NM, NM},
{PS, PS, ZO, NS, NS, NM, NM},
{PS, ZO, NS, NM, NM, NM, NB},
{ZO, ZO, NM, NM, NM, NB, NB}};
int32_t kd[7][7] = {{PS, NS, NB, NB, NB, NM, PS},
{PS, NS, NB, NM, NM, NS, ZO},
{ZO, NS, NM, NM, NS, NS, ZO},
{ZO, NS, NS, NS, NS, NS, ZO},
{ZO, ZO, ZO, ZO, ZO, ZO, ZO},
{PB, NS, PS, PS, PS, PS, PB},
{PB, PM, PM, PM, PS, PS, PB}};
int32_t ki[7][7] = {{NB, NB, NM, NM, NS, ZO, ZO},
{NB, NB, NM, NS, NS, ZO, ZO},
{NB, NM, NS, NS, ZO, PS, PS},
{NM, NM, NS, ZO, PS, PM, PM},
{NM, NS, ZO, PS, PS, PM, PB},
{ZO, ZO, PS, PS, PM, PB, PB},
{ZO, ZO, PS, PM, PM, PB, PB}};
static float32 ec; // 误差变化率
/**************求隶属度(三角形)***************/
float32 FTri(float32 x, float32 a, float32 b, float32 c) // FuzzyTriangle
{
if (x <= a)
return 0;
else if ((a < x) && (x <= b))
return (x - a) / (b - a);
else if ((b < x) && (x <= c))
return (c - x) / (c - b);
else if (x > c)
return 0;
else
return 0;
}
/*****************求隶属度(梯形左)*******************/
float32 FTraL(float32 x, float32 a, float32 b) // FuzzyTrapezoidLeft
{
if (x <= a)
return 1;
else if ((a < x) && (x <= b))
return (b - x) / (b - a);
else if (x > b)
return 0;
else
return 0;
}
/*****************求隶属度(梯形右)*******************/
float32 FTraR(float32 x, float32 a, float32 b) // FuzzyTrapezoidRight
{
if (x <= a)
return 0;
if ((a < x) && (x < b))
return (x - a) / (b - a);
if (x >= b)
return 1;
else
return 1;
}
/****************三角形反模糊化处理**********************/
float32 uFTri(float32 x, float32 a, float32 b, float32 c)
{
float32 y, z;
z = (b - a) * x + a;
y = c - (c - b) * x;
return (y + z) / 2;
}
/*******************梯形(左)反模糊化***********************/
float32 uFTraL(float32 x, float32 a, float32 b)
{
return b - (b - a) * x;
}
/*******************梯形(右)反模糊化***********************/
float32 uFTraR(float32 x, float32 a, float32 b)
{
return (b - a) * x + a;
}
/**************************求交集****************************/
float32 fand(float32 a, float32 b)
{
return (a < b) ? a : b;
}
/**************************求并集****************************/
float32 forr(float32 a, float32 b)
{
return (a < b) ? b : a;
}
static float32 _PID(struct PID_X *self, float32 target, float32 feedback)
{
float32 pwm_var; // pwm调整量
float32 iError; // 当前误差
float32 set, input;
CLASSICPID *pri = &self->pri;
// 计算隶属度表
float32 es[7], ecs[7], e;
float32 form[7][7];
int i = 0, j = 0;
int MaxX = 0, MaxY = 0;
// 记录隶属度最大项及相应推理表的p、i、d值
float32 lsd;
int temp_p, temp_d, temp_i;
float32 detkp, detkd, detki; // 推理后的结果
// 输入格式的转化及偏差计算
set = target;
input = feedback;
iError = set - input; // 偏差
e = iError;
ec = iError - pri->lasterror;
// 当温度差的绝对值小于Emax时对pid的参数进行调整
if (fabs(iError) <= Emax)
{
// 计算iError在es与ecs中各项的隶属度
es[NB] = FTraL(e * 5, -3, -1); // e
es[NM] = FTri(e * 5, -3, -2, 0);
es[NS] = FTri(e * 5, -3, -1, 1);
es[ZO] = FTri(e * 5, -2, 0, 2);
es[PS] = FTri(e * 5, -1, 1, 3);
es[PM] = FTri(e * 5, 0, 2, 3);
es[PB] = FTraR(e * 5, 1, 3);
ecs[NB] = FTraL(ec * 30, -3, -1); // ec
ecs[NM] = FTri(ec * 30, -3, -2, 0);
ecs[NS] = FTri(ec * 30, -3, -1, 1);
ecs[ZO] = FTri(ec * 30, -2, 0, 2);
ecs[PS] = FTri(ec * 30, -1, 1, 3);
ecs[PM] = FTri(ec * 30, 0, 2, 3);
ecs[PB] = FTraR(ec * 30, 1, 3);
// 计算隶属度表确定e和ec相关联后表格各项隶属度的值
for (i = 0; i < 7; i++)
{
for (j = 0; j < 7; j++)
{
form[i][j] = fand(es[i], ecs[j]);
}
}
// 取出具有最大隶属度的那一项
for (i = 0; i < 7; i++)
{
for (j = 0; j < 7; j++)
{
if (form[MaxX][MaxY] < form[i][j])
{
MaxX = i;
MaxY = j;
}
}
}
// 进行模糊推理,并去模糊
lsd = form[MaxX][MaxY];
temp_p = kp[MaxX][MaxY];
temp_d = kd[MaxX][MaxY];
temp_i = ki[MaxX][MaxY];
if (temp_p == NB)
detkp = uFTraL(lsd, -0.3, -0.1);
else if (temp_p == NM)
detkp = uFTri(lsd, -0.3, -0.2, 0);
else if (temp_p == NS)
detkp = uFTri(lsd, -0.3, -0.1, 0.1);
else if (temp_p == ZO)
detkp = uFTri(lsd, -0.2, 0, 0.2);
else if (temp_p == PS)
detkp = uFTri(lsd, -0.1, 0.1, 0.3);
else if (temp_p == PM)
detkp = uFTri(lsd, 0, 0.2, 0.3);
else if (temp_p == PB)
detkp = uFTraR(lsd, 0.1, 0.3);
if (temp_d == NB)
detkd = uFTraL(lsd, -3, -1);
else if (temp_d == NM)
detkd = uFTri(lsd, -3, -2, 0);
else if (temp_d == NS)
detkd = uFTri(lsd, -3, 1, 1);
else if (temp_d == ZO)
detkd = uFTri(lsd, -2, 0, 2);
else if (temp_d == PS)
detkd = uFTri(lsd, -1, 1, 3);
else if (temp_d == PM)
detkd = uFTri(lsd, 0, 2, 3);
else if (temp_d == PB)
detkd = uFTraR(lsd, 1, 3);
if (temp_i == NB)
detki = uFTraL(lsd, -0.06, -0.02);
else if (temp_i == NM)
detki = uFTri(lsd, -0.06, -0.04, 0);
else if (temp_i == NS)
detki = uFTri(lsd, -0.06, -0.02, 0.02);
else if (temp_i == ZO)
detki = uFTri(lsd, -0.04, 0, 0.04);
else if (temp_i == PS)
detki = uFTri(lsd, -0.02, 0.02, 0.06);
else if (temp_i == PM)
detki = uFTri(lsd, 0, 0.04, 0.06);
else if (temp_i == PB)
detki = uFTraR(lsd, 0.02, 0.06);
// pid三项系数的修改
pri->pKp += detkp;
pri->pKi += detki;
if (pri->kd_e)
{
pri->pKd += detkd;
}
else
{
pri->pKd = 0; // 取消微分作用
}
// 对Kp,Ki进行限幅
if (pri->pKp < 0)
{
pri->pKp = 0;
}
if (pri->pKi < 0)
{
pri->pKi = 0;
}
// 计算新的K1,nKi,nKd
pri->nKp = pri->pKp + pri->pKi + pri->pKd;
pri->nKi = -(pri->pKp + 2 * pri->pKd);
pri->nKd = pri->pKd;
}
if (iError > Emax)
{
pri->out = pri->max;
pwm_var = 0;
pri->flag = 1; // 设定标志位,如果误差超过了门限值,则认为当控制量第一次到达给定值时,应该采取下面的 抑制超调 的措施
}
else if (iError < -Emax)
{
pri->out = pri->min;
pwm_var = 0;
}
else if (fabsf(iError) <= Emin)
{
pwm_var = 0;
}
else
{
if (iError < Emid && pri->flag == 1) // 第一次超过(设定值-Emid(-0.08)摄氏度),是输出为零,防止超调,也可以输出其他值,不至于太小而引起震荡
{
pri->out = 0;
pri->flag = 0;
}
else if (-iError > Emid) // 超过(设定+Emid(+0.08)摄氏度)
{
pwm_var = -1;
}
else
{
// 增量计算
pwm_var = (pri->nKp * iError // e[k]
+ pri->nKi * pri->lasterror // e[k-1]
+ pri->nKd * pri->preverror); // e[k-2]
}
if (pwm_var >= Umax)
pwm_var = Umax; // 调整值限幅,防止积分饱和
if (pwm_var <= Umin)
pwm_var = Umin; // 调整值限幅,防止积分饱和
}
pri->preverror = pri->lasterror;
pri->lasterror = iError;
pri->out += pwm_var; // 调整PWM输出
if (pri->out > pri->max)
pri->out = pri->max; // 输出值限幅
if (pri->out < pri->min)
pri->out = pri->min; // 输出值限幅
return pri->out;
}
/*整定开始前的预处理,判断状态及初始化变量*/
static void tune_pretreatment(struct PID_X *self)
{
CLASSIC_AUTOTUNE *tune = &self->tune;
CLASSICPID *vPID = &self->pri;
tune->tuneTimer = 0;
tune->startTime = 0;
tune->endTime = 0;
tune->outputStep = 100;
if (*vPID->pSV >= *vPID->pPV)
{
tune->initialStatus = 1;
tune->outputStatus = 0;
}
else
{
tune->initialStatus = 0;
tune->outputStatus = 1;
}
tune->tuneEnable = 1;
tune->preEnable = 0;
tune->zeroAcrossCounter = 0;
tune->riseLagCounter = 0;
tune->fallLagCounter = 0;
}
/*计算PID参数值*/
static void calculation_parameters(struct PID_X *self)
{
CLASSIC_AUTOTUNE *tune = &self->tune;
CLASSICPID *vPID = &self->pri;
float32 kc = 0.0f;
float32 tc = 0.0f;
float32 zn[3][3] = {{0.5f, 100000.0f, 0.0f}, {0.45f, 0.8f, 0.0f}, {0.6f, 0.5f, 0.125f}};
tc = (tune->endTime - tune->startTime) * tune->tunePeriod / 1000.0;
kc = (8.0f * tune->outputStep) / (PI * (tune->maxPV - tune->minPV));
vPID->pKp = zn[tune->controllerType][0] * kc; // 比例系数
vPID->pKi = vPID->pKp * tune->tunePeriod / (zn[tune->controllerType][1] * tc); // 积分系数
vPID->pKd = vPID->pKp * zn[tune->controllerType][2] * tc / tune->tunePeriod; // 微分系数
}
/**
* @brief 自整定函数
* @param {PID_X} *self
* @return {*}
* @note 成员变量tuneEnable、preEnable和controllerType需要提前赋值。tuneEnable变量值为0时是使用PID控制器而tuneEnable变量值为1时是开启整定过程当tuneEnable变量值为2时是指示整定失败。preEnable变量在整定前赋值为1表示先做预处理。而controllerType则根据所整定的控制器的类型来定主要用于参数的计算。
*/
static uint8_t _auto_tune(struct PID_X *self)
{
CLASSIC_AUTOTUNE *tune = &self->tune;
CLASSICPID *vPID = &self->pri;
/*整定开始前的预处理,只执行一次*/
if (tune->preEnable == 1)
{
tune_pretreatment(self);
}
uint32_t tuneDuration = 0;
tune->tuneTimer++;
tuneDuration = (tune->tuneTimer * tune->tunePeriod) / 1000;
if (tuneDuration > (10 * 60)) // 整定过程持续超过10分钟未能形成有效振荡整定失败
{
tune->tuneEnable = 2;
tune->preEnable = 1;
return tune->tuneEnable;
}
if (*vPID->pSV >= *vPID->pPV) // 设定值大于测量值,则开执行单元
{
tune->riseLagCounter++;
tune->fallLagCounter = 0;
if (tune->riseLagCounter > LAG_PHASE)
{
*vPID->pMV = vPID->max;
if (tune->outputStatus == 0)
{
tune->outputStatus = 1;
tune->zeroAcrossCounter++;
if (tune->zeroAcrossCounter == 3)
{
tune->startTime = tune->tuneTimer;
}
}
}
}
else
{
tune->riseLagCounter = 0;
tune->fallLagCounter++;
if (tune->fallLagCounter > LAG_PHASE)
{
*vPID->pMV = vPID->min;
if (tune->outputStatus == 1)
{
tune->outputStatus = 0;
tune->zeroAcrossCounter++;
if (tune->zeroAcrossCounter == 3)
{
tune->startTime = tune->tuneTimer;
}
}
}
}
if (tune->zeroAcrossCounter == 3) // 已经两次过零,可以记录波形数据
{
if (tune->initialStatus == 1) // 初始设定值大于测量值则区域3出现最小值
{
if (*vPID->pPV < tune->minPV)
{
tune->minPV = *vPID->pPV;
}
}
else if (tune->initialStatus == 0) // 初始设定值小于测量值则区域3出现最大值
{
if (*vPID->pPV > tune->maxPV)
{
tune->maxPV = *vPID->pPV;
}
}
}
else if (tune->zeroAcrossCounter == 4) // 已经三次过零,记录另半波的数据
{
if (tune->initialStatus == 1) // 初始设定值大于测量值则区域4出现最大值
{
if (*vPID->pPV > tune->maxPV)
{
tune->maxPV = *vPID->pPV;
}
}
else if (tune->initialStatus == 0) // 初始设定值小于测量值则区域4出现最小值
{
if (*vPID->pPV < tune->minPV)
{
tune->minPV = *vPID->pPV;
}
}
}
else if (tune->zeroAcrossCounter == 5) // 已经四次过零,振荡已形成可以整定参数
{
calculation_parameters(self);
tune->tuneEnable = 0;
tune->preEnable = 1;
}
return tune->tuneEnable;
}
void pid_x_constructor(struct PID_X *self)
{
self->PID = _PID;
self->AUTO_TUNE = _auto_tune;
self->pri.flag = 0;
self->pri.out = 0;
self->tune.preEnable = 1;
}